Visualising Memory Graphs:
Interactive Debugging using Java3D

Darius Bradbury
May 19, 2008

Abstract

This report describes a new way of visualising Java run-time objects,
and their associated memory graphs. Using the Eclipse debugging frame-
work, alongside the Java3D platform, it aims to describe methods for
extracting useful debugging information from a running program and dis-
playing this information in a three-dimensional space. The focus of this
report deals with how using a three-dimensignal space can enhance the
debugging experience, introduce mteresting visualisations of programs,
and create a basis for fulure debugging in this way. The result is a user-
friendly, efficient aystem whicb can visualise large programs in a rela-
tively small amount of screen real-estate. This report shows that three-
dimensional visualisation cau be a useful tool for debugging, program
analysis, and a viable alternative to traditional solutions.

Contents

1

Introduction

1.1 Formal Definition
1.1.1 The Memory Graph
1.1.2 Beyond The Memory Graph

1.2 Project Road Map

Background - 3D Modelling in Java

Requirements

Design

4.1 Preliminarieso
4.1.1 Creating the Eclipse Plug-in.
412 The Underlying Framework - what we aim to build our

visualisations from 000 L.

4.1.3 Constructing the Three-Dimensional Environment -

4.2 The Update Handler

4.3 The Object3D Class

4.4 Maintaining the Java3D scene graph - The View3D Class .

4.5 Managing Different Layouts,
4.5.1 Creating a Layout Manager

4.5.2 Simple 3D Layout Designs
4.5.3 Ranking The Objects,
4.5.4 Divide and Resize Algorithm
4.5.5 A Different Approach to Determining Object Size -
4.5.6 Clustering Method
4.5.7 Generating Forward and Backward Traces
4.6 User Interaction
4.7 Ovwerall Design View

Testing

5.1 Simple Prograni - BFS and DFS using the Visitor Pattern
5.2 Complex Program - Vector Space Document Retrieval Model . .
53 Test Rig e

Conclusions

6.1 FurtherWork oo
6.1.1 Calculating Differences Between Program States
6.1.2 On-the-fly Updating/Editing of Variables
6.1.3 Animating Program Runs,

Acknowledgements

Appendix

10
10
10

11
12
13
15
17
18
18
19
20
20
23
23
26
28
29

32
32
34
38

39
40
40
40
41

41

42

1 Introduction

Debugging solutions currently available offer a wide range of information to the
end-user. This information is typically displayed in a textual or 2-dimensional
graphical manner. At the low level, we have available debuggers which provide
insight into the state of a running program by allowing insertion of breakpoints,
and displaying a summary of the program’s stack at any point [14]. However,
such a display of information makes it difficult for a nser to follow pointers,
and references within a live program. This is true of any text-based system,
whatever the graphical front-end [8]. Debuggers do go further than this however,
with some allowing graphical output to display graph structures of the running
program |9, It is these kinds of systems which we build upon.

Visualisation solutions on the other hand seem to be available in an off-line
format. A program is processed by means of its source code, and various layouts
produced. These kinds of systems map source code to visual representations of
that sonrce cade [12]. These systems provide some help in debugging systeins,
but are much more frequently used to aid the understanding and planning of
larger programs. When representing our run-time objects in 3D space, it would
be useful to consider how these same principles can be applied. We aim to pro-
vide much the same information, but with respect to the run-time environment
of a program, rather than its static counterpart.

Current visualisation solutions seem to be moving toward three-dimensional
interfaces, examples of this can be seen in the work of Knight and Munro [11],
Callaghan and Hirschmiiller [6], and Maletic, Leigh, and Marcus [12] to name
but a few. The reason for this is that it turns a two-dimensional piece of screen
estate, into a three-dimensional world. This allows us to display many more
items in a smaller amount of space. It also provides an immersive interface for
exploring a program, allowing certain paths to be followed, and alleviates the
problem of traversing huge two-dimensional graphs.

This project aims to combine aspects from both these fields of work, in order
to visualise Java run-time cobjects in a three-dimensional manner. This will
allow for visnalisation of any program, but from a debugging perspective. This
so-called three-dimensional debugger will provide users with a way of stepping
through their code, visualising it on-the-fly, and providing them with a new
way at looking at the program they have created. This can be either to debug
it, enhance it, or simply aid understanding. This project will therefore deal
with displaying this disconnected, dynamically changing set of objects, and the
multiple links between them.

The idea underpinning these visualisations is that of a “Memory Graph” [17].
A memory graph, as the name suggests, represents the contents, and current
state, of memory in a given system. It is this information that we aim to extract
and display to the user. Memory graphs allow for an instant understanding of
a program state, looking at links between objects, the number of objects, the
disconnected or connected nature of the system, and a visual representation of
how the program ‘grows’.

The system we aim to produce will analyse Java programs in particular. As
such, we will use the widespread IDE (Integrated Development Environment)
‘Eclipse’ as our starting platform. In particular, we will make use of JDT,
the Java Development Tools and one of its main components, the built-in Java
debugger [1].

This project assumes a framework sitting between the Java debugger and
itself, allowing for useful extraction of the current memory state, object and
primitive information, and provide prompting of state changes. We then aim
to build an Eclipse plug-in which will allow for our three-dimensional space
interface to sit side-by-side with the JDT debugging interface. The aim is to
give the user additional debugging opportunity, as well as program visualisation,
side-by-side with a comprehensible set of tools already available in the JDT
framework.

1.1 Formal Definition

In order to continue from here we must formally define what is meant by a
“memory graph”, and what relations can be drawn from such a graph. This
will provide impetus for its use, and how to go about visualising it in a three-
dimensional space.

Some of the first work in useful graphical debugging was achieved by Zeller
and Litkehaus in developing their DDD (Data Display Debugger) front-end for
UNIX debuggers [16]. The concept was to display data structures in the form of
graphs, these graphs would be representations of the run-time components of the
running program. Formally, each value in memory is considered a vertex (node),
and each edge is considered to be a pointer between two such values, or in this
case, vertices. In the DDD system, clicking on a node resuited in its expansion,
displaying the values it references. This idea has been developed greatly, notably
by Zimmermann and Zeller in their paper on ‘Visualising Memory Graphs’ [17].

They describe a memory graph as, “a basis for accessing and visualizing
memory contents.” This differs from the DDD solution as they propose an
automated method for creating the whole graph. The formal definition of the
structure is defined in their paper [17]; however, I will outline it below:

1.1.1 The Memory Graph

Consider a graph defined by G, where G = {(V.E,root). Namely, the graph
consists of a set of vertices, or nodes, a set of edges, and a dedicated root node.

Vertices V: Each vertex in the set V consists of a triple. This triple is made
up of the value, type, and address of the object in memory. In Java, this can
be both primitives and object instances.

Edges E: FEach edge also consists of a triple, this tine made up from two
vertices, notably, the related vertices, and an operation. The operation relates
to how we construct a name for the edge, given the parent and descendant
vertices. Edges in this graph are directed, one value is referencing another, and
hence, one node, is pointing to another.

Reot node: lu Zimmermann and Zeller's interpretation of a memory graph,
the root node is a dedicated vertex which references all base variables. In other
words, every variable in the scope of the memory graph is accessible from root.
What this entails is that the description of a memory graph used here, creates a
directed and connected graph. This project aims to generalise this requirement,
allowing for a disconnected graph whereby a specified root node is not required.

1.1.2 Beyond The Memory Graph

The above describes the definition of a memory graph; however, as explained
we may not always want to decide on a root node. Instead. we look to create
a more general graph, but aliow users to select nodes for which they would
like to make the root. This then allows us to continue looking at the work
of Zimmermann and Zeller, and continue to use their memory graph concept.
Their paper then continues on the automatic construction of memory graphs
which simply consists of creating a connected graph linking the root to all the
hase variables, considering the path of references which must be undertaken to
get there [17].

Building on this memory graph structure is the notion of forward and back-
ward traces. What we have already explained is the notion of a disconnected
memory graph. No root node is specified, but we can ascertain the links between
objects and primitives. Program slicing deals with how a certain bit of code is
relevant to a particular program [2]. In particular, dynamic slicing, whereby
we only consider a specific execution of a program, or in our case, the current
run-time state of the program [15].

What we propose is a method similar to slicing, which T will call tracing to
differentiate it from program slicing. We use the disconnected memory graph
we have available to us, and then continue to construct a connected memory
graph by picking a particular root. In other words, we are looking to centre
focus on one object, and see what role it plays in the programn. This provides
the user with the ability to see all the relationships within a large program, but
then narrow focus down to a particular object.

The notion of a trace is very inuch similar to that of a memory graph, in fact,
Zimmermann and Zeller consider tracing to provide sub-graphs of the overall
memory graph [7]. Forward tracing looks at all the references mnade from our
user-selected ‘root’ node. A backward trace does the opposite, it traces all the
objects that reference it, and then the objects which reference those objects,
and so forth. In other words we can look at the path of referencing from a
particnlar object, and the sequence of referencing to obtain a particular object,
at any point in a programn run.

Forward tracing can be seen as a way to look at how a particular object
influences other objects and variables, in particular, showing its effect on the
system as a whole. Backward tracing provides the insight into finding out which
other objects inflnenced the resulting value of this object or primitive. Notably
we now have an underlying connected graph structnre representing the eftect
of, or the objects/primitives which effect, a certain object.

This tracing system allows us to free np the notion of a memory graph,
removing the necessity for the graph to be connected, and allowing us to visualise
the run-time state of a whole program. Then, if the user wishes to select focus
on a single object, we provide tracing options to do just that.

1.2 Project Road Map

This project aims to access a framework sitting on top of the Eclipse JDT
debugger, providing access to all the underlying objects and primitives in the
system. This framework will provide information as to the values of an object,
as well as the links to other objects. It is our job therefore to display this

information as coherently and intuitively as possible to the end user. We must
be sure that the system created is capable of dynamically updating any graph
in view, when the underlying program changes. In other words, we subscribe
to the underlying debug model to notify us when the user steps to a different
point in the program, and update our model accordingly.

We will make use of the theory of memory graphs, as weil as forward and
hackward traces. However, we must also design intuitive ways in which to
display the overall run-time environment, as well as making the job of a debugger
simpler by highlighting the more interesting nodes.

With this in mind, 1 will now continue to explain the program in the fol-
lowing order. Firstly, we must cover some essential 3D modelling background
information, providing us with the knowledge to build a 3D universe. Then we
will look at the requirements of our system. providing the foundations for our
design phase. In explaining the design I will aim to leave out uninteresting intri-
cacies, whilst detailing the more interesting and important methods. As such, I
will cover the initial steps necessary to creating a 3D universe within Eclipse, as
well as having access to the underlying debugging information. Following that,
I will discuss the main classes in my design, detailing their roles, and any inter-
esting methods. [will finish the design stage by providing a graphical overview
of the program as a whole, both in terms of the Java3D scene graph, and the
actual classes created. Following the design stages, 1 will aim to make use of
stringent testing to fully explore the options, and usability, of the resulting pro-
gram. Finally, I will look to draw conclusions based on the design and testing
stages, as well as the theories we have already discussed.

2 Background - 3D Modelling in Java

The 3D modelling system required for this project must be cleanly accessible
from within our Java ecode, allow for dynamic changes to the 3D world, and
provide a high-level intuitive interface for doing so. What we require is a system
which can interface cleanly with the Eclipse window, and allow user-interaction
with the underlying 3D objects.

One such three-dimensional modelling language satisfving these require-
ments is Java3D. The reason for this is that it provides a way to create a
three-dimensional scene, completely in Java, and in a high-level manner. Whilst
giving much control to the designer, Java3D abstracts away from the intricacies
of 3D modelling present in many other systems [3]. The designer does not have
to worry ahout rendering, which is done efficiently and automatically. The de-
signers aim is to construct a scene graph, which consists of instances of Java3D
objects. These Java3D objects can consist of a variety of different components,
including transforms, shapes and groups of trausforms and shapes. It is the
job of these objects to define the geometry, lighting, location, orientation and
appearance of all the visual objects in the virtual universe.

The JavadD API consists of over a hundred classes present to aid the con-
struction of this three-dimensional universe. The use of these will be crucial in
designing a clear and concise Java3D program. In order to begin describing iy
approach to the creation of a memory graph, we mnst first explain the basic
construction of a 3D nuiverse, in the Java3D environment.

As already stated, Java3D looks to create an underlying tree structure which

is subsequently rendered. The minimal such tree in order to create a 3D universe
is explained in figures 1 and 2 taken from the Java3D API guide [3].

Nuodes and NodeComponents (abjects) Ares (object relauonships)

. ‘ Al nivers
‘ _' Virwallnrverse —» parent-child link

0 Leeale s > reference

/7\1 Group
_/

/ Teaf
/

C - Yy NodeComponent
-

wther ohyeels
o
Figure
LBy]

1: Key for symbols in Scene Graph [3]

\W///)j VirmalUnverse \
Locale \

Ve \
(BG \ \g? BranchGroup \

\

e TG TransfennGroup \

Sm‘."l View ”::f{ CanvasiD |’| Screeniny I\

\ View Platform

\ i J } = \
Physical Body Physical Enviromisent \

— T B e —— — — — —— —

Figure 2: Scene Graph Data Structure, with minimal tree highlighted [3]

The diagram in figure 2 shows us the minimal scene graph, with an additional
group node, consisting of a shape and associated appearance and geometry.
Rendering this scene graph would produce a 3D environment, with a single
object in it. This is a very basic Java3D program, and the intricacies are far more
apparent when some code is produced. Options are available to the designer
detailing the exact viewing angles and platform that are output, interactions
with the physical environment (i.e. User input), and detailed construction of
3D objects.

Java3D allows a vast array of options; however certain construct rules must
be adhered by. For example, looking at figure 2, we could have created a Branch-
Group node, consisting of further BranchGroup nodes, each consisting of a
shape. Each BranchGroup node can then have an associated transform which

controls the positioning of all the objects below it.

Two relationships occur in the scene graph creation of a JavalD program.
The first is a parent-child relationship used in creating the graph. This rela-
tionship must adhere to a number of rules. Namely, a group node can have
any number of children, but only one parent. A leaf node can have one parent
and no children. In other words, a tree with no backward links. The second
relationship is known as a reference, and associates a ‘NodeComponent’ object,
with a scene graph node. These ‘NodeComponent’ objects are there to define
the geometry and appearance attributes used to render their associated visual
object.

The tree created can be described as having a single root, being acyclic, with
no backward links. This means that each leaf can be fully described based on
it’s so called “scene graph path”. The path from the root node, to the leaf.
In this way, the Java3D renderer is able to configure the most efficient render
order, for the leaves of the graph. It should be noted that this is the case for the
parent-child relationships, the reference relationships may go between branches,
but in essence they are not dependent on this tree structure, and simply define
‘shareable’ attributes (such as appearance and geometry). This overall tree
definition describes the construction patterns used in creating a scene graph
which is renderable by the JavadD renderer, and gives a general idea as to the
processes required to making a three-dimensional user interface.

3 Requirements

In designing any program, one must consider the requirements, in terms of
fulfilling and achieving certain goals, whilst also adhering to the requirements
in efficiency and usability enforced by an end-user. I will now discuss what these
requirements are:

Accuracy: One of the most important aspects of such a program is that no
objects are displayed incorrectly. We must be sure to carefully produce
any code, following design patterns if possible, to ensire that what appears
on the screen is consistent with the underlying model.

Efficiency: When debugging, a user may step through many breakpoints, and
thus, many visualisations will be generated. As such, we must ensure
that this generation process is as efficient as possible. Some efficiency
considerations must come into play when considering what we expect the
renderer to do, but we must also ensure that the calculation of positions,
sizes, rotations of any of our objects is done efficiently also. We will he
forced to keep track of possibly thousands of run-time objects, and as
such, we should use appropriate data structures.

Usability: We must constantly consider the usability of the program during
the design phase. After all, this program is designed as an interface to an
underlying model. As such, it should be intuitive, simple, and yet allow
for much variety in the need of the user. Be it for visualisation of the
memory graphs. or for thorough analysis.

Extensibility: The code should be designed to allow for extensions to be made.
For example, I propose the design of a layout manager to handle the
positioning of objects. As such, it should be simple to create new layout
patterns, without having to completely restructure the code. There should
be a separation of concerns in this respect.

Integration: The program should provide seamless integration inte the Eclipse
framework. It would make sense to create the three-dimensional environ-
ment in a frame which sits alongside the debugger. A view which is only
available during debugging, perhaps.

This list prescribes themes which should feature throughout the design process,
whilst giving an overview of what we plan on achieving. We will now continue
to describe various aspects of the design which aims to meet these requirements.

4 Design

The design of this 3D Debugger consists of a number of aspects. Firstly, we must
consider the creation of an Eclipse plug-in, allowing for a side-by-side view of
the JD'T debugger, and our final three-dimensional view. Becondly, we must
consider interfacing with the underlying framework that sits between the JD'T
debugger, and the program to be described. Thirdly, we must look at the in-
tricacies in creating a virtual 3D universe which allows for dynamic behaviours,
and user manipulation. Finally, we must consider our layout manager, the lay-
outs we wish to display, and the general data structures in place for keeping
track of all the objects in the system. In the remainder of this section 1 will
highlight some of the more interesting aspects of the code, including code ex-
amples. Any details that are omitted will be available in the code listings in the
Appendix. A general overview of our design can be found in §4.7.

4.1 Preliminaries

This section will discuss the methods used in setting up a framework to allow
for the dynamic placement of 3D visual objects.

4.1.1 Creating the Eclipse Plug-in

Creating an Eclipse plug-in is a straightforward process. Dave Springgay gives
a good outline of the processes necessary [13]. However, essentially we are
concerned with creating an Eclipse ‘View’. We give the user the option of
opening this view whilst debugging an application, and thus, sticking to our
usability requirements. Once we have a genera! Fclipse view framework set-up
(for which Eclipse does most of the work), we can add any SWT (Standard
Widget Toolkit) components into it. In our case, this will comprise of adding
our 3D canvas to the frame.

e
Fhie s o callback that will allow us to create the view perspectine el
fodnatialise it
o Whal s expreeted s that we ereate o frinue bascd ou the inpur Composie
voobpeor o owlnes wall contimn o view
*/
public void createPartControl(Composite parent) {

J/ Create new Compostle object piven parent node
Composite composiie = new Composite{parent , SWI.EMBEDDED) ;
FFosel the 2D layout wanager as o FillLayonn
coinposite.setLayout (new FillLayout{));

i Create a frame 1o add our canvas mnto, along with

at ey COMPOICHT S Wi wish 1o (llh]}lil\
f = SWTAWT. new_Frame(composite};
“ot the internal tranme taveut to o FlowLasvout

f.setLayont(new FlowLayout{});

Ix

= Create an Updote bowdler object to o deal with all undevhving chaned
+ volilications Subscrihe the npdate handler 1o ome ternmediary

= debugging rames ok

#/

UpdateHandler uh = new UpdateHandler(this);

10

DebugModelContainer .INSTANCE. addListener (uh);

Purtralise the view 2 Cyeate o vintual 3D amverse and g physical

ff canvas)
init (};
Pk thie resalting [hame
f.pack (};
J4 Deal witlh maintaming the corrveci aspeet 1ation daring resising

composite. addControlListener {(new ControlAdapter() {
public void controlResized {ControlEvent e) {
canvas3D.setSize{{int) ([.getBounds().height * wideScreenRatio), T
.getBounds (). height };
1

I3k

fpomet the tmtial size
canvas3D.setSize ({int) (f.getBounds().height * wideScreenRatio),
f.getBounds (). height);

Listing 1: Creating the View plugin

Listing 1 shows us the implementation of the callback method used by Eclipse
to generate the view. What we expect to happen is that Eclipse will call this
method when the view needs to be created, providing the Composite object
in which to place our 3D view. At this point we must also subscribe to the
aforementioned framework, sitting on top of the JDT debugger, which will pro-
vide detailed information regarding the underlying model. This will further be
explained in §4.1.2. Our initialisation method will then be discussed in greater
detail in §4.1.3.

Also of interest here is the resizing procedure we create. In order to allow our
3D interface to be resized, we pass on arguments from the surrounding frame,
to the underlying Canvas3D object. This is the component of the Java3D scene
graph which controls the physical view output to the user. By passing on this
information we can dynamically change the size of this canvas.

4.1.2 The Underlying Framework - what we aim to build our visu-
alisations from

Asg we have seen, our intention is to subscribe to a framework sitting on top of the
JDT debugger. What we can expect here is that this system will communicate
with the debugger, process the information received, and then make available to
us information we may want. Qur first requirement is to be notified of underlying
madel changes. In other words, we expect the model to provide us with a list of
underlying objects, each time the user moves to a different debugging state in
the JDT debugger. Thus, we subscribe, and what we receive are notifications
each time the underlying system changes. These notifications consist of all the
underlying objects which have been created, or are new, and all the underlyiug
objects which have been modified, or had their state changed.

This subscription system provides us with a way of interfacing nicely with
the intermediary framework. We will always receive new and changed objects,
and these objects will provide us with access to the underlying model. The type
we expect to receive in these updates is called an ‘IDebugObject’. Our job is
then to construct the 3D world from our collection of these IDebugObjects, and

11

the information available for each one.
This is a summary of the interface provided for an IDebugQObject, showing
us the potentially useful methods which we have access to:

public interface IDebugObject {

Qo
c
o Gaetmn the pnderiving LlavaYalue terther o Do P oommtive o an TlaveCiject o
4/

public IJavaValue getValue();

fi

« apetwrn links to objects, including the varrable pepresentimg the link
otlirows NulltaukEsception

0"“.

pﬁblic Map<IDebugObject , IVariable> objectLinks() throws NullLinkException;

2
athrows NnlllankEseeption

/
public Map<IDebugObjeet, IVariable> backLinks{} throws NullLinkException;

‘
il
¢ooretimn backlinks 1o objects luclndiug the vattable aepiescuntimg the ok
1
4

+ Gele the current caleulated page raok
Sreturn

'/

public double getPageRank({);

Listing 2: The IDebugObject Interface

It is this underlying framework, and update process, which we rely upon to
provide us with accurate information for the model. The implemeutation used
is a current project by Luke Cartey; however, any implementation adhering to
this same interface would provide the same functionality. Hence, we model our
3D view without the absolute need for defining the underlying programming
language. If we consider extensibility, it should be clear that the designs we
continue to explain could in theory be portable to any programming language
for which memory map style properties can be extracted.

4.1.3 Constructing the Three-Dimensional Environment

As we have seen in §2, Java3D requires a minimal scene graph to be built. This
essentially constructs the 3D environment, and the viewpoint parameters. This
is our first step in creating the overall visualisation, and is accomplished by
setting up the minimal scene graph as in Diagram 2. The code which accom-
plishes this makes a call to the Java3D utility class for universe creation. This
class generates our minimal scene graph structure which is required. However,
our job is to construct a new branch, and then modify this when necessary. In
other words, we instantiate a universe with the SimpleUniverse object, and then
attach our own BranchGroup which will contain all of our visual objects. This
main BranchGroup creation method is shown in listing 3.

12

F

ST his method scte np the nwin BraochGreonp pavameters Uhis as the Braneh

ool the Javasdly sceue praph which will contain all ol owr tun e objects

» We scl paraimetvrs ineluding lightiog o backgronod colowr . bonodimgSplior:
aned capabihities of the wain BranehGronp vode We olso asgien 1This

o BrnehCaoup an assooated TranslormGroup whiclt will deal wih the

= Dvanslborms made upon the whale oy erae

= oeretmn Lhe Aain BranchGroup mede de A node toowdd all the visnal 3D
+ vbvcls Lo,

public BranchGroup createScene3D(} {

Create the Aain Braoohéroup
mainBranchGroup = new BrauchGroup();

Create the bhounding leal e
ST s speciTies the sive of the rendering space.,

r‘n.a‘inBrauchGroup. addChild {(boundingLeaf)};
£ Chreate the backgrouml
l-n'a-inBranchGroup. addChild (bg);

Cieate the ambient Liehs
..:J;".('rvu.lv the divectional Tight
:"':”.('I‘(m'u‘ the transfonn greop wode

mainTransformGroup = new TransformGroup {);
JF Ser the appropriate capabdities oo

oo DraniormGroup nede

o Bet e appropiade capabibities fer (he mam BomehGronp node

i

Vel che main TrnnstormGroup vode to the mman BranchCrongs

Z0 s means The main transform group will be o clhinge of oll the
/i trausiormations ol the nniyversy oo whole

mainBranchGroup . addChild (mainTransformGroup) ;

return mainBranchGroup;

}

Listing 3: Scene3D initialisation method

What we now have is a usable 3D environment. We can create Java3D visual
objects, add them to the main BranchGroup node created, and they will appear
in our canvas. At this point we must also create picking methods, to enable 3D
visual object selection, navigation behaviours and user interaction behaviours.
I will further explain these methods in §4.6.

4.2 The Update Handler

As described in §4.1.2, our intermediary framework is designed to provide us
with updates containing IDebugObject objects. We have seen the interface for
the IDebugObject in listing 2, and we have seen in listing 1 that we instantiate
an UpdateHandler object, and pass it to this intermediary framework. What
we propose, is that this UpdateHandler wiil receive, and process all update
commands. We expect all representations of the underlying memory graph

13

nodes to pass through this update handler. Hence, the update method is shown
in listing 4.

public void updateDebugModel(IDebugTarget debugTarget .
Map<DebugChangeType, List<IDebugObject>> objectsChanged) {

o Reset all objects stale
i Create dteralar o vatiable ased to ateyate thhongh the ubjects.

£ Cheek for new objects an the sysliem

il [objectsChanged.containsKey (DebugChangeType CREATED)) {

JioSet om nveratar ta the obijects which are N
iterator = objectsChanged . get { DebugChangeType .CREATED) . iterator ():

Tterate tnongh . =ending cach IThebueObjeet 1o the View3h objpect
while {iterator. hasNext(}} {

IDebugObject itemp = iterator.next();

view3D . createNew (itemp };

J7ohel the state ol these Objectdly objecis 1o NEW

View3D.idoToObject3D . get (itemp). state = "pew” ;

+ Uerate dhrongh the changed objects . ws seed ta scwd then throuph o
cothe Viewdh object however. just set then state as CHANCTDD

Iterate chrongh all the deleted TDebuaOhpecrs . narity view 3 ol the
s remuoval

t/

74 Mhaving viocessed all objects, linalisac view
Pirsl extract ail the Objectdlr obpects still i oo ssstemn
[/ We do s by accessing anr atatic mappmg ol 1DebugOhjects 10 Objecidbs

AT positioning depends ow ik apelate the rank and positions to
s/ necommodate these changes

A We then pecform an npdate on eacle abject
for {Object3D 03d : totalListOfObjects) {
03d . update ();

Listing 4: The Update Handler

Essentially, we have notified the View3D object, our View maintainer, of all
the changes to the underlying system. We set the current state of each Ohject3D
(Gur 3D object representation detailed in §4.3), and then we perform an update
for each Object3D, creating the new layout in the virtual universe.

Initially, I had decided to update each object as it was sent to the View
model. However, as we digcuss later in §4.5.3, our layout of these objects depends
on each other, hence, we shouldn’t perform any changes to the Object3D’s
representation, until all the objects in our model are known. Once all the
objects have been passed through to the View, we know the system is stable

14

once again, and as such we can re-calculate our layout in the virtual world.

4.3 The Object3D Class

Having briefly seen in §4.2, we use an Object3D class to store details of our
visual objects. Each Object3D instance in our system represents an underlying
node in the memory graph. As such, it must deal with positioning of the visual
object, appearance and size, and attaching itself correctly to the Java3D scene
graph. We also integrate within this class methods for generating name labels
for the object, and methods for generating directed lines to other Object3D
instances in the virtual world.

As this class is somewhat large, I will simply highlight and explain certain
interesting methods below.

Object Positioning

As we will discuss in §4.5.1, we will use a layout manager to calculate the
actual positions for each object. However, placing this visual object correctly
in the 3D space is the job of the Object3D class. Each Object3D has its own
BranchGroup Node which is directly attached to the main BranchGroup. This
means that we can apply a transform to the TransfromGroup governing this
node, in the knowledge that all Object3D’s will have the same reference point.
In other words, because each Object3D is at the same level in the Java3D scene
graph, they each are given the same default location. This default location is
unimportant, as long as the visual objects are placed correctively relative to one
another. In this way, we translate the TransfromGroup for this Object3D by
the vector given by our layout manager.

In order to allow for the dynamic changing of positions we may require for
certain layouts, we query the layout manager each time we npdate the object,
and update our vector position. However, transforming the same Transform-
Group will result in moving that direction, from our current one, Clearly this
is not what we want. Instead we create a new Transform3D object each time
the object is updated, thus resetting to our default location.

General Appearance summary

In order to make the visualisations somewhat attractive, I decided to represent
each underlying object in the memory graph as a sphere. Each object is then
given a colour, relative to its state. Namely, green for new objects, orange for
changed objects, and white for unchanged objects. Each object is given material
attributes which can be set in Java3D. These consist of how the object reacts
to different lighting. As we saw in listing 3, our 3D universe has a light source,
and direction. Thus, we set our objects to utilise this, providing a nice texture,
and a simple way to differentiate between object states.

Creating Name Label

Each sphere represents an underlying node in the overall memory graph, how-
ever, in order to differentiate between them, we can apply a name label to each
object. This name object is actually a three-dimensional object in its own right;
we create it by using the font extrusion class available in the Java3D API. We
then place it on the edge of the sphere by generating a new TransformGroup

15

and BranchGroup for this object. In the scene graph, the name label’s Branch-
Group would be placed as a child of the associated Object3D's node. This is
constructed much like the Object3D themselves, in that, each name label object
is given a default location, this time at the centre of the sphere. A simple trans-
form moves them to the edge of the sphere. In essence, we have put the objects
themselves in charge of their name objects, making positioning straightforward,
and providing the user with the ability to differentiate between, and focus upon,
certain objects of interest.

Creating inter-Object3D lines

In order to allow for the smooth addition and removal of lines between objects,
we also put the objects in charge of any links they may have to other objects
in the memory graph. There are two aspects to this problem, the first is that
we must create lines joining the two objects being linked and the second is that
we must be able to visually determine the direction of this relationship. The
IDebugObject, as seen in listiug 2, provides a list of all references made to any
other objects. We utilise this list to discover the necessary links, and as each
link is directed, we can place the Object3D class in charge of maintaining these
links when and if they are necessary. Essentially, we can be sure that if each
object displays links for each of its references, then all the references in the
underlying system will be displayed visually in the virtual world.

In order to tackle the first problem, we utilise the Java3D LineArray class.
Assume the source object has position vgoyurce. represented by a three dimen-
sional vector. This vector represents the position of the object in relation to the
centroid of the overall design space. We can extract a similar vector for each
object referenced by the source object. As each Object3D maintains a vector
position for its object, we extract a vector for each of these target objects, as an
example, let us call it vyarger,. Where each represents the various objects our
source object may reference. We now have a list of (Vsource, Vrarger,) Dairings.

As we are maintaining the lines of this object within the Object3D class, and
hence, in the Object3D’s own sub-tree in the scene graph, we must make a few
further calculations. When wea create new child BranchGroup and Transform-
Group pairs for our ObjectdD itemns, they are given the Object3D’s vector po-
sition as a root position. Hence, we must calculate the vector vsource — Viarget,
for each i. To find the target objects position relative to the source objects, we
simply subtract v4rger; from vsource- We can then create a new BranchGroup,
and place within it our lines generated from points (0, 0, 0) and viapger, — Vsource-
This constructs a line joining the two visual objects in the virtual world.

In order to represent the directed nature of these lines, we must construct
arrow heads. Given the three-dimensional world we are in, we represent these
arrowheads using cones. Java3D has an inbuilt class for Cone creation, however,
this class simply creates a cone of given dimensions. Its placement is the job of
this Object3D class. The Cone class takes as arguments a base radius, a length,
and an Appearance parameter. In order to further distinguish line direction,
we create the appearance of the cone to match that of the source object. This
makes it easily recognisable when we look at the multi-colour nature of our scene
graph, without being over bearing,

Calling the Cone class as described, generates a cone positioned at the Ob-
ject3Ds relative root, and orientated along the y-axis of the 3D environment.

16

In other words, this Cone will appear at the centroid of the Object3D’s sphere,
pointing along the positive v-axis. In order to position it correctly, we must
perform some vector manipulations. Firstly, we rotate the object, and then we
translate the object,

The rotation involved is calculated using the knowledge of orthogonality in
vector spaces, such that:

1 <Ly >
] - 1yl

The inner product represented by < z,y >, is in fact calculated using the dot
product in three-dimensional space. We can use this equation to calculate the
angle between our current cone orientation, and our desired cone orientation.
Notably, we consider our cone as pointing towards (0,1,0). And our target object
as pointing towards Vgirection, » Where Ugireetion; = Utaraet, — Usouree- Lhis allows
us to calculate the following:

angle(z,y) = cos

-1 (O) 11 O)-Ua'.irectwn.,-

”vdrrfcf ion;

= cos

This provides us with 6, the angle between our two vectors. What we next need
is the axis of this rotation, this is in order to actually rotate the cone. In order
to calculate this, we normalise our target object direction vector, and calculate
the cross-product of the two:

_ ygirection;

’Ua[:irec.zionmr,,,1 - f“'”d
irectron, H

Vrototional Azs = (0,1,0) X Vdireetiona, rm,

This provides us with a vector perpendicular to both vectors, perfect in provid-
ing the rotational axis for our transformation. In the event that # is collinear,
in other words, either 180°C or 0°C, the cross product will give us 0. Hence, in
this case we check to see if § is 180 °C, and if so, set the axis direction to (1,0,0).
Otherwise, the angle is 0, and hence the axis of rotation is unimportant.

With the axis of rotation calculated, along with the angle of rotation, we
simply perform this rotation on the code object. We then translate our now
correctly pointing cone so it sits on the edge of the target object. This process is
repeated for all i, such that each target object which cur source object references
has an associated line and arrow head.

4.4 Maintaining the Java3D scene graph - The View3D
Class

As we have seen, we delegate much of the visual control to the Ohject3D and
LayoutManager classes. However, what we must ensure is that we maintain a
correctly formed Java3D scene graph, and keep track of all the Object3D in-
stances in our current program. This job is performed by the View3D class.
This class has the job of creating each Object3D instance, and placing it cor-
rectly in the scene graph. lt provides a static mapping of 1DebugObject objects
to Object3D objects. This is done in the form of a HashMap.

The View3D class could be considered as the hub of this program. It keeps
track of all the objects and the scene graph, communicates with the Eclipse

17

framework (as seen in §4.1.1), and as we will see in §4.6, it handles all of the
user interaction methods. The actual details of this class are somewhat trivial
however, and as such, 1 will refrain from geing into much detail. | will give more
information about the user interaction aspect later in this report, and the full
listing of this class is available in the appendix.

4.5 Managing Different Layouts

This section will deal with the positioning of ocur visual objects and how we
can use a layout manager abstraction to help deal with this problem. We will
then discuss how using an importance measure can allow for a more advanced
layout system, which bases positioning on importance. In §4.5.4 we outline such
a layout technique, and discuss its usability. ln §4.5.6 we continue to lock at
how importance can affect us, but propose that items referencing each other
should be positioned together. Hence, we outline a different algorithm, and
draw comparisons about the two. Finally, in §4.5.7, we look at how to create
forward and backward traces as discussed in §1.1.2.

4.5.1 Creating a Layout Manager

Each Object3D in our system looks to gain information about its position vector,
from a dedicated layout manager. Seeing as one of the most interesting aspects
of this project is the positioning of our visual objects in the 3D environment, it
seemed only sensible to separate concerns, and create a layout manager inter-
face for which any layout manager must extend. Our layout manager interface
contains only two simple methods:

IR

+ This «dass seryves as o conlroller {or the positions of cach Ohjectdly in the
*ohvslern

¥

£

public interface LayoutManager3D {

+ Oparant odd
the Object3) we wanl the position of

voGretnrn Y threr donensional vector represeunling 11 s pesition
!

*y
public Vector3d getPosition (Object3D o03d);

RN
Fins methad tells the Lavonur Manaper 1o o aceconsidor drs postiiot valbiies
+ We call thig method when they vuderlying model changoes

public void updateAllPositions ()

Listing 5: The Layout Manager Interface

As we can see, we ouly expect our layont manager to respond to Object3D
instances querying the layout manager for their position, as well as notifications
that the underlying model has changed. However, as we will see, the more
complex the layout gets, the more work it has to do behind the scenes. | will now
discuss the layout managers implemented in the system, and the increasingly

18

difficult challenges faced as more information regarding the underlying model is
used.

4.5.2 Simple 3D Layout Designs

Initially, we consider layout managers for which a bare minimum of information
from the model is extracted. Essentially, they just collate a list of Object3D
instances in the system, and generate a position for each. Two such implemented
layouts are called the GridLayout, and the StackLayout.

Grid Layout

The GridLayout manager simply creates a mapping of Object3D instances, to
three-dimensional vectors. Each time an object asks for its position, if this
object is in the mapping, we return its associated vector. Otherwise, we generate
a new position in a grid-like fashion. We start out at (0.0,0), and each time
increase the x position by the size of the object and some space. When the
width of the view has been filled, we reset the x position to 0, decrease the y
co-ordinate, and continue as such. An extremely simplistic method for filling
the screen with objects.

This provides a very simplistic view of all the ohjects in the system. We
essentially show the order in which objects are provided to the model, and not
much else. It makes it very easy for a user to see how many objects are in the
system, and their names, however, when we show the links between objects, this
maodel does not. fair so well. We also fail to utilise the third dimension available
to us.

Stack Layout

In order to utilise the third dimension, we act as before, but increase the z
co-ordinate each time the screen is filled. In other words, we create a stack of
grid patterns. This again, is very simplistic, and simply provides the user with
a time-line of objects. 1t makes it very difficult to do much else, especially when
considering links between objects.

The two views discussed work as a general view layout. They are designed to
be as simple as possible, and provide the user with a clear representation of the
underlying system, even if such a representation rarely gives new insight into
the program. However, they demonstrate the ability for the layout manager to
abstract away from the intricacies invelved in the Java3D) model. We simply
keep track of a set of three-dimensional vectors, nothing else.

These two layouts are also static, once an object has a position given to it,
it is set. Hence, we don't need to make use of the update method, it simply
has no effect. We will see as the views get more complex however, that such
notifications become necessary. These two views are designed to give an extreme
example of how simple the layout manager can be, but it alse aims to show that
the layout of the three-dimensional objects will determine the success or failnre
of this three-dimensional view.

19

4.5.3 Ranking The Objects

In order to improve upon our simple layout designs, we must increase our knowl-
edge of the underlying systems, and use that information in constructing our
layout. One seemingly useful way to do this is to calculate a rank for each
object. The underlying framework provides methods for us to do this, in fact,
it utilises a system much like PageRank; an algorithm assigning rank based on
the hyper-link structure of the web [5]. However, instead of links to other web
pages, we consider links to other objects. As such, we can call the page rank
method for each IDebugOhject, and get an importance score for each visual
object. With the ability to assign a score to each object, we can design our
layouts based on this scoring system. We propose that the higher the objects
importance, the more interest it poses to the end user.

4.5.4 Divide and Resize Algorithm

Our aim is a design which utilises both the three-dimensional properties of our
system, as well as extracting information from the underlying rank of our ob-
jects. The algorithm 1 propose here makes use of the objects rank to determine
position, and utilises the extra dimension available. The idea is that the most
important object, should be at the centre of our focus. As the importance score
drops, these objects should move away from our focus. In order to do this, I pro-
pose a system which utilises both the objects size, and its position to visualise
its importance. The proposed algorithm does the following:

1. Rank all the objects, and place them into an ordered list.

2. Extract the first item, place it at the root, set its size parameter as the
largest object you will want in the graph, and the bounding sphere the
size of the view we are working with.

3. Create a set of 5 or 6 lists, depending on the root nodes origin. We transfer
all the remaining items in the ordered list, incrementally, into the sub-lists.
In other words, the first list gets the sccond ranked objeet, the third gets
the third racked, etc. Until the original list is empty.

4. We then go back to step 2 for each list. However, we move the root position
out in all 6 directions, halfway to the edge of the bounding sphere, from
the current root node respectively for each list. We also half the size of
the bounding sphere we are allowed to work within, and we half the size
of the object node. When we are past the first iteration, we only create 5
lists, as we don’t send any objects back in the direction they came from.

This is performed by the following two methods:
private void createRankedListOfObjects() {

SO nsl extiact all the Ohjedidy abjects =031l in om syslem
Collection <Object3D> totalListOfObjects = ViewdD.idoToObject3D . values (};

totalRankedListOfObjects = new LinkedList<Object3D>(totalListOfObjects);

L/ Sort the calledtion based onorank
Collections.sort(totalRankedListOfObjects |

20

new Comparator<Object3D>() {
public int compare{Object3D argl, Object3D argl} {
douhle diff = arg0.ido.getPageRank{) — argl.ido.getPageRank(};
if (diff > 0) {
return —1;
} else if (diff < 0} {
return 1;
} else {
return 0;
}

}
1)
SO Save this total obiect aauking
currentRanking = {LinkedList<Object3D>) totalRankedListOfObjects.clone():

H
Listing 6: Ranking The Objects

private void createPositions(Vectordd root. double radius, int cameFrom,
LinkedList<Object3D> rankedListOfObjects) {

SO Place vaal node iu posilion
idoVectorMap.put(rankedListOfObjects.removeFirst (), root);

/i Creare sub-lists

Pyivide Fist onp inte 5 oac 0 depemding on coamnel rom Locaiion -
int i = 0;
while (!rankedListO{QObjects.isEmpty{)) {
switch (i) {
case O
itk
if (cameFrom — 0) {
break;

110 . add(rankedListOfObjects.removeFirst {));
break;
case 1:
i++;
if (eameFrom — 1) {
break;

111 .add{rankedList OfObjects.removeFirst {});
break;

}
}

£ Create posttions o e sab=lisls .

if (cameFrom = 0 && !110.isEmpty ()) {
createPositions{new Vector3d(root.getX{} — radius, root.getY (),
root.getZ(}), radius / 2, 1, 110);

Listing 7: Method for Creating Positions

21

The main point to highlight here is that we can keep in view any number of
objects, and yet maintain a constant sized space. We make sure our most
important object is the focus of attention, and we ensure that focus draws away
as the importance lessens. In constructing our sub-lists, and hence, direction of
spread, we maintain the order inherent in the list, and hence, we do not nced to
worry about sorting for the sublists. This saves dramatically on the complexity
of the algorithm.

This system provides a very usable overview of the underlying disconnected
menory graph of our objects. Importantly, this algorithm maintains focus on
the important objects, whilst removing clutter around them. It does this by not
creating a sub-object space, where the object just came from. Hence, objcets
aren’t placed crowding the important objects. This view seems to be an ideal
way to represent the memory graph, whilst maintaining usability, and increasing
the number of objects in the screen space compared to a 2D design. An example
is shown in figure 3.

Figure 3: The Divide and Resize Algorithm in use.

22

4.5.5 A Different Approach to Determining Object Size

As we have seen in the Divide and Resize algorithm, the visual objects size can
play a vital role in the usability of the general layout. The halving method
employed in the divide and resize algorithm seems rather naive, even if it works
well visually. Given that the model has access to an importance score for each
object, it would seem nonsensical for two objects to be of the same size, when
one is vastly more important than the other. Hence, I suggest a sizing algorithm
based solely on the importance of the object. In the Divide and Resize algorithm
of §4.5.4, the pattern of decreasing size will still exist by definition of the way
the objects are positioned, however, the size may now be deemed as having more
relevance.

This solution will also work with any layout manager pattern, regardless of
whether it uses importance in positioning. For example, our naive grid and stack
methods will instantly be more usefnl with such an implementation. Hence, I
now model the objects size as a function of its importance. This is done by taking
the highest scoring object, setting that at an acceptable size, and calcnlating
every other object’s size as a ratio of this size, corresponding to the ratio in
importance scores between the two objects. We shift the available range such
that every object in the system will be visible, generating a minimum value.
Thus, every object’s size lies between our minimum, and the size of the most
important object, determined by its relative importance.

4.5.6 Clustering Method

As we have discussed thronghout this section, onr aim is to draw upon infor-
mation in the graph strncture, and present this information as well as possible
in the layout of our 3D environment. Following on from the Divide and Re-
size algorithm in §4.5.4, we build an extra layer of information. What we now
utilise is the fact that in order to keep the 3D graph as ‘tidy’ as possible, it
would be preferable to keep all similar items close together. Drawing upon
knowledge from computational linguistics, we can apply the ‘Distributional Hy-
pothesis’ [10]. In linguistics, this refers to gaining knowledge regarding a single
word from the company it keeps. We apply this to the object model by draw-
ing upon the knowledge of referenced nodes, in order to define the positioning
of a single node. We essentially cluster groups of objects together. Thus, our
disconnected graph is divided np into its connected sections.

In order to achieve this, we use the framework of the Divide and Resize
algorithm, however, when producing our sub-lists, instead of distributing on
importance alone, we distribute on the context of the objects. In other words,
we put all objects in the same connected graph, into the same list. We can
perform this creation of groups of connected objects, by iterating through all
the node points in our current subgraph, iteratively calculating the references it
contains as we go. We ensure that each sub-group still maintains its importance
order however, an important feature of this algorithm.

The other main difference between this algorithm and the divide and resize
algorithm is that we remove the space requirement. We no longer keep all the
objects within a predetermined sphere of 3D space. In essence, we allow the
graph to grow outwards in all directions. In order to do this effectively we
always allow our objects to move away from the centroid, once we reach a point

23

where the subgraph is fully connected, we apply the divide and resize algorithm
as before.

What this provides us with is a simple solution to the problem of over-
crowding and crossing of links between different parts of the program. We
now separate out the different memory graphs, and provide an extremely user-
friendly approach to dealing with the disconnected nature of the overall graph.
In cssence, we maintain the most important object as the centroid, and cluster
the graph based on our reference context measure. We then apply this itera-
tively to each of the subgraph’s most important objects.

Figure 4 shows us the view this algorithm achieves. Figure 5 shows a side by
side comparison of the two layout managers, showing the added detail brought in
by the clustering model. It also shows a midway step, whereby we have clustered
the initial group, before finally showing the result of doing this iteratively for
each sub-group. It must be noted however that due to the added complexity
of this algorithm, our code is no longer quite as efficient. A more detailed
explanation and the effects of this are detailed in §5.2.

Figure 4: The Clnstering based layout manager in usc.

24

Identical 729 Objecls in each visualisation

AlpOritE After Top-deve

Figure 5: A side by side comparison of the two algorithms.

25

4.5.7 Generating Forward and Backward Traces

In §1.1.2, we discussed the notion of forward and backward traces, In our model
this is essentially the equivalent of following all the forward or backward links
from an object, and drawing the tree representing that link structure. We give
the user the option of selecting the root node from our generalised view, and as
we have constructed our generalised view based on importance, we know that
the most links will be found using the most important node.

Firstly, the user selects the node they would like to act as the root node. All
the objects in the scene graph are then removed, and we call a tree generation
method in the associated Object3D instance of the selected root node. This is
performed by the method shown in listing 8, located in the View3D class.

public void createTrace{) {
Object3D tempo = currentRightClickedNode;

Collection<Object3D> ¢ = idoToObject3D. values ();
A Cean the scene graph

for (Object3D 03d : ¢) {
mainTransformGroup . removeChild (03d. getBranchGroup ());

/it

s Sigutly which objpect is the yoot We nesd 1o know this lor ot he
s oripht elick cvents.

-r;"

currentRootNode = tempo;

/f create Lree lavon! lov objecis.
if {traceDirection = 0} {
J6 Create farward trace
tempo. createCurrentTree ();
tempo. displayObjectLinks {);
} else if {traceDirection = 1} {
f7 CUreate backward (Lace
tempo . createCurrentBackLinkTree {);
tempo . displayObjectBackLinks ()

}

SOWe only owant te hiphlight 1he voot node!
tempo. highlightCurrentObject ();

Listing 8: Creating the Trace - View3D’s role

The Object3D instance for the root node then begins to construct the tree, it
simply iterates through all the objects it has links to, and the objects those
objects link to, and re-creates them in the scene graph. The positions of the
visual objects are calculated by an associated tree layout manager, which each
Object3D instance accesses. The Object3D instance then draws the directed
lines connecting the graph, including backlinks. As backlinks are possible, we
have to keep track of the objects we have seen, this makes sure we don’t attempt
to create an already visible object. For a forward trace, the associated method
is shown in listing 9.

private void createSubObjects{) {

Cleoose auy hnes 0f thes e current by o display

26

iF (linesVisible) {
removeLines();
}

f0 Remove Che PramslormGronp for this Objecndlr.
bg.removeChild(tg);

A Gel position rame Lhie tree Tavont manager and st
o hat position Tor thos Object31)
Vector3d pos = treeLayout.getPosition(this};

i Areate object, ow bsed on ils new Lrace position
createObject () ;

froAdd newly apdared hanchGronp to the scone wraph
view3D . mainTransformGroup. addChild (bg };

s Beatore detanls ot they were wvisible

o Create Tocal wap Tor this Objeet3D s links
Map<IDebugObject, IVariable> linklist = linklist = ido.objectLinks (};

HOWe add this ide ta our seen st cnsuring we don 'l v lo cveale 1t

Ly :
foapaln

seenObjectList .add(ido);

oo tterate thnongh object links . ctealing each obhjeci

for {Entry<IDebugObject, IVariable> variableLink : linklist.entrySet()) {
[DebugObject i = variableLink.getKey();
if (i '= null && !'seenObjectList.contains{i}) {
AT we haven U secn this object yeu . search it
View3D.idoToObject3D . get{i).createSubObjects (};
seenObjectList.add{ido };

i Draw Jines from this Objectsld to each of it 7s chuldien
createlines(this, i);
}

Listing 9: Creating a forward Trace - Object3D’s role

We now just need to discuss the layout manager’s construction of the traces.
This is a standard tree drawing problem. What we perform is a Breadth-First
search of the tree, starting at the root node, calculating the required space of
each sub-tree. This is a single pass of the tree structure where we remember
seen nodes in order to handle backlinks and self-referential objects. This creates
a mapping of Object3D nodes, to their associated subtree size. We then begin
once again at the root, and knowing the size required for each sub-tree, allocate
the space accordingly on a level by level basis. In other words, we create a list
for each level of the tree, and then draw each level at a time. In order to deal
with forward traces, we look at the references from the respective object, and
generate the tree in the negative y-axis. In contrast, for the backlinks structure,
we look at objects that point to the respective objects, and create the tree in
the positive y-axis. The result of this trace drawing algorithm can be seen in
figure 6.

What this algorithm provides is a guarantee that all the objects will be drawn
correctly, and no overlapping, or ill-placement will occur. We know through our
subtree size calculations how much space each subtree regnires, and it is the use
of this fact which allows us to draw our graph in a beautified and clear manner.
We are able to position each node, with the advanced knowledge of the number

27

of nodes we need to place below it.

Figure 6: A look at forward and backward traces.

4.6 User Interaction

In order to make use of the various optional views our plug-in provides, we want
to provide a simple way for the user to interact with the 3D environment. As we
have seen in §4.1.3, we instantiate Java3D mouse rotate, mouse translate, mouse
wheel zoom and keyboard navigation behaviours. This allows our users to move
around the virtual world with ease. It should be noted that the rotation and
translation methods have been created on the Object3D branch group node,
and hence, physically move the objects in the 3D space as one whole. On the
other hand, the zoom and keyboard navigation behaviours have been created
on the view side of the scene graph, and hence, move the perspective of the
user. It is this solution that best suits the needs of the user, providing a very
intuitive way to move around the 3D universe.

Having generated ways to manipulate the view of the virtual world, we must
look at a way in which we can directly affect the underlying structure. The
methods I provide are detailed in figure 7. However, in order to provide these
methods we must discuss a few more Java3D requirements. Firstly, we have
available to us a Java3D picking class. Essentially, we subscribe and implement
the View3D class as a mouse listener for the Java3D canvas. Then, when mouse
events arrive, we can qnery the picking class to find out which 3D object lies at
the current monse point on the canvas. We then create our menus accordingly.

As we can see in our Eclipse, and further two close-up 3D environment
screenshots in figure 7, menu creation depends on the state of the view. In
other words, we separate the user from the idea that a forward or backward

28

o S e i

Stack View
tait S Ve

oostan Spacs v
Clustering Based

Reset Viow = HlTTHe T
Show Objoct Kames Backward Trace
Hide Object Nantes Show Detaiis
Show Lines Show Object Lines
Hide Lines Hide Object Lines

Redraw Space

Figure 7: The menu options available

trace is simply another layout; the user can switch between the main overall
view, and any trace, seamlessly.

What I would also like to highlight from figure 7 is the small table to the right
of the 3D view, in the Eclipse window. If a user selects to “show details”, then
this table emerges, showing all the information we have about the object. These
include its name, its type, any variables it has, and any objects it references.
These are all extracted from the IDebugObject getValue method. This extra
information can provide the user with added debugging opportunity, as well as
extensibility in the project as a whole. The JDT debugger offers the changing
of live values, if our underlying framework can cope with this, then our view
can provide a simple way to change the values of variables in an object, on-the-
fly. In fact, our table implementation is capable of exactly this, however, the
underlying model currently in use doesn’t allow for that to occur.

4.7 Overall Design View

Having discussed the working, and some of the interactions of the classes in-
volved, along with the Java3D scene graph, it is sensible to provide graphical
illustrations for both. The UML diagram represcents the Java classes I have
implemented, however, it simplifies the intermediary debug model framework,
which I haven't created. This is shown in figure 8. The Java3D scene graph rep-
resents the graph structure I have generated, which is renderable by the Java3D
renderer. It follows the rules and conventions outlined in §2, and is shown in
figure 9.

29

0¢
ugrsap Aur Jo uorjejussardel TIN[) Y 8 91031

Debug Model!
Gridtayoul
4 D.* D..1 xid
5 GrdLayoul)
Objectad oreateNewP osition(o3d : Objeot3D) : Vaotodd
UpdateHandler ObJect3D(ido - IDebugObjectviewdD . ViewdD) g-tPosl‘h‘on(o?n.i - QObjeot3D) Vectodd
b s v6ld updateAllPositions(: vold
UpdateHandlaviendd : ViewdD) oreateObjeci : vo 0. T
updateDabugModekdebugTarget : IDebugTarget.objectsChanged : Map) : vold getBranoh pQ : Branch 1]
updateQ: vold StackedLayout
4 caloulxieStepSixe() : vold
catoul ralmportanceSize(: vold StackedLayout)
orexteD etaits)) : void orexteNewPosition(o3d - Object3D) : VestoB3d
1 1 0." |showDetails() : woid getPosthon(0o3d : Object3D) - Veotordd
hideDetatsQ ; vold updateAliPositions() : vold
ViedD dsplayObjecttnkss) : vold 55 o1
ViewG00 displayObjeotBackiinks() - vold N
oreateP atControkparant - Composie) : void craateSubObjeots) : woid TreeLayoulC
inH) : vold cre atwBackiinkSubObjects)) : vold
createPopuphenus) ; vold highlightCumentCbject) : void TreelLayouiCQ
destioy0) : vold removaHIghlighQ) : vold ore steNewPosition(o34d : Object3D) : Veotordd
oresteSoene3DQ : BranohGroup craztelines(objac3D : Object3D.linkdtist : Set): vold getPosition(03d : Object3D) : Veotordd
aotlonPedormaed(e : ActlonEvent) : void oteateLines(objeot3D : Object3D.ido . IDebugObjact) : votd getSize(ido : IDabugObjech) : Int
resafView() : vold temovelines(: void updateAllPositions() : vold
createTraceQ) : void removeObjeotlinks) : wold 0.2 0.4
oreateNew(ldo : IDabugObject) : vold replacerliObjects) . vold
removae(ido : IDabugObjact) : void oreateCurentTree() : votd BackTraalayoutC
; . . createCurrentBacktinkTreeQ : vold
mouseClicked(e - MouseEvenD) : vold B BackTreeLayoutCO
mousaEntatad(a : MouseEvenD : void . rexbeNewPosition(o2d : Objaot3D) : Veotod3d
Exitad(arg0 : MousaEvent) : vold hidaLines() : vold . -l on(63d : Objact3D): Ve
L = getP oition(03d : ObjectdD) : Veotordd
RO el L 0. G.E getSEe(ido : IDebugObject) int
asad(e : 0. void updateAllPositions) : void
setFoous() : vold
0.1 0.4
ClusteringBasa dtayoul] RankB asedLayoul
ClustsringB asedLayoul(RankBasadLayout()
cra ateR2nkadListOfObjrots)) : wold oraxteRankedListOfObjects() . wold
createNewP osrtion(o3d - Object3D) : Vecto34 craateNewP osition(o3d : ObjectdD) . Vecto3d
updateAllP ositions() : vald updateAllPositions) woid
getPosition(e3d - ObJect3D): Veato3d getPesition(03d : Objeot3D) : Vectodd
ore stePositiong(root < Veoter3d,radlus : doudle oamaefrom - IntrankedListOTObjects | LinkedLish) : void ore ateP ositions(root : Vaetor3d.radlus : double,cameFrom ; intrankedListOtObjeots : LinkedLisD) : void
getGroups(inputlist : UnkedList) : LinkedLia

1€

op0o [euyY 8y} Jo 2InONIS deid oueds (EBAB(YT, :6 2INTL]

8ounding leaf

BackGround

Lighting

OBJECT3D
TREE

BG

Mouse Behaviours|

. oan

OBJECT3D
TREE

W Virtual Universe

Locale

L e BranchGroup
\

\\
N\

4

TG } TransformGroup

Screen3D

= View " Canvas3D }—P»
AN Il M

» 4

Physical Env.

Physical Body

5 Testing

We have already seen some screen shots of the working program, however, we
provide two stringent tests for our program to ensure it works as intended,
along with a test rig to fully analyse the program. In both test programs, I
will run through the whole series of options available to the user, and ensure its
correctness. However, I will also demonstrate its ability to visualise code, and
hopefully provide valuable insights whilst debugging.

5.1 Simple Program - BFS and DFS using the Visitor Pat-
tern

This test program begins by creating an underlying tree structure. This tree
structure is represented by Node objects, and the links between them. We
construct a tree which has the following representation:

N
AN

Figure 10: The tree we want to perform BFS and DFS on

Qur test program begins by creating this structure, and then performs a
DFS, followed by a BFS, both using the visitor design pattern. Within Eclipse,
we set a break point after the last node has been generated, this provides us
with an object state as in figure 11:

Figure 11: The main view

This displays the most important object, as the array holding all the Node
instances. In order to see the representation of our underlying model, we simply

32

request a forward trace on ‘Node(Q’. This trace is shown in figure 12.

Fignre 12: Forward trace of the Node0 object

Looking more closely at figure 12 uncovers a few interesting facts. Namely,
we see the representation of the actual node is a Node object, pointing to a String
object, the variable name, and the list containing its pointers. Hence, figure 12,
is a direct representation of the underlying tree from figure 10. Looking at the
backwards trace of Nodel0 also provides us with what we would expect. This
is shown in figure 13, and shows us that the array storing all Node instances
points at Nodel(, and drawn the expected tree resulting from that.

Figure 13: Backward trace of the NodelO object

Now let us imagine there is a bug in the code, and we can’t understand
why the output from the DFS and BFS is incorrect. Given figure 14, and the
representation shown, it’s clear that our intended tree isn’t being created. We
can see that one of the nodes isn’t attached properly in the tree construction
method, namely because there are two nodes with no incoming links. Further
investigation shows us that this is Nodeb. Low and behold, Node5 was never
added to the edges of Nodel in this run.

This kind of debugging is intuitive, and simple to do within this framework.
If you have an intuitive understanding of what the underlying model in your
program should look like, it is fairly straight forward to spot bugs like this in

33

Figure 14: A bug in the code

small code samples. Assuming a larger program is in use, the user must delve a
little deeper into the part of the graph which they suspect the bug to exist in.
This is obviously heavily aided by the JDT debugger itself. However, this test
still shows the usability of the code in a small program, and shows that the code
can cope with the different types of back links and cross links that can occur in
a memory graph.

5.2 Complex Program - Vector Space Document Retrieval
Model

In order to test the usability of our code on a more realistic example, we eval-
uate its ability to cope with a much larger program. Namely, a document
retrieval system which is based on the vector space model. This system gener-
ates hundreds of objects, makes use of large data structures, and is generally
quite computationally expensive.

34

The program looks to analyse an inverted file index for a set of 2,631 docu-
ments. This index consists of each word, its document frequency, and a list of
document, term frequency pairs for each document which this term appears in.
This information is then used to retrieve relevant documents, given a query.
In order to do this, the program makes use of various data structures. It
uses mappings of terms onto document frequencies, terms onto lists of (doc-
ument,frequency) pairs, and documents onto their document lengths. It also
creates a sorted set of document scores to provide a ranked set of results. These
mappings are created from the inverted file index, and then used to create the
scores for each document given a query.

Given the program structure provided, let us see how our program deals
with its visualisation. Firstly, we look at the initial creation of the maps, and
how they are presented in the 3D space. This is shown in figure 15. Figure
16, shows the state of our program once the data structures have been filled.
Unfortunately, in filling these data structures, the underlying system seems to
become overloaded. So much so, that it stops communicating with the update
handler (outlined in §4.2). As such, it isn’t possible to push the 3D world to
its limit in this system. This is unfortunate, but we will see in §5.3 that our
program can in fact cope with many more objects.

The visualisations we can achieve initially show us our document retrieval
system generating 17 objects (Figure 15). These objects consist of the instan-
tiation of the vector space model itself, the maps we discussed and their com-
ponents, and a set. Initially, all of these sets are empty. What we see is the
minimal number of objects required in setting up these structures.

Figure 15: Initialising the data structures.

Figure 16 then shows us the structures as they begin to fill, including the
relationship the vector space model component has with them. What we notice
is that the InputStreamReader object used to read the mverted file index has its
own space in the universe, concerned with reading the file. The data structures
in our vector space model object then grow as more words are read and processed
from the inverted file index.

35

Figure 16: Filling the structures with the data. (3375 objects)

No. Of Objects | Time to Update View | Lines Creation | s(object)™!
17 0.051s 0.018s 0.003s
730 0.28s 0.357s 0.000489s
1066 0.255s 0.208s 0.000239s
1975 0.868s 0.519s 0.000439s
2026 0.94s 0.298s 0.00046s
3051 2.117s 0.398s 0.00069s
4250 4.634s 1.09s 0.00109s
5527 8.798s 1.507s 0.00159s

Table 1: Analysis of growth

As discussed, this system can visualise around 5,000 objects before memory
issues in the underlying system pose a problem. Timings for the growths can
be seen in table 1. What we see is an expected growth regarding creating the
visualisations, namely, that our system is not linear.

Empirically, we have seen that our system is not linear, in fact, results
would lead us to believe that the program is O(n?). Doubling the number of
objects, roughly quadruples the time taken. Looking at our system, we see
that each iteration results in a sort of the entire collection, namely at a cost
of O(nlogn). This however is not our biggest computational task. In fact, our
clustering algorithm, whilst iteratively removing a node from a cluster, and re-
clustering, performs in the worst case n(n-1)/2 iterations. This in fact involves
n? comparisons, as at each iteration we must look to see if the node has been
seen before. Thus, if at each step we cluster into only two groups (the worst
case), we only reduce the size of our search space by one at each step, this costs
O(n{n —1)/2), which is equivalent to O(n?) and is the most complex algorithm
in use. Hence, the main contributor is the clustering algorithm, but as we see
from the timings, our system is still extremely usable.

We now look at figures 17 and 18 to see how useful our program can be

36

in potential debugging, and aiding understanding of such a large program. As
we have seen, figure 16, shows us how the system is separated into two overall
sections. One for our vector space model, the other for the file reader. Delving
deeper into the vector space model, we see in figure 17 that our vector space
model object has references to six other objects. This includes, four maps,
one list, and one set. Exactly what we would expect here, given our program
construction. As we can see, verification of this is extremely straight forward.

From the same view, namely figure 17 we can also see that two of the maps
seems to have a much higher importance that the rest. Figure 18 looks in
more detail, telling us that the most predominant mapping is the mapping
of documents to strings. Second to that is the mapping of terms onto lists
of (document,frequency) pairs. These two mappings are what make up the
majority of our 3D space, and as such, take up a lot of the memory in the running
of the program. This information could be crucial to a designer, showing how
the program operates, and visualising the problem of potentially repeated data.
In this case, it might be possible to combine information, and provide a more
efficient map structure.

Figure 17: The VSM Object

Figure 18: Detailing the important maps

37

5.3 Test Rig

In order to have a sustained and thorough testing available through the creation
of the program, we make use of a test rig. When the testing mode is switched
on, through a flag in the source code, at each step of the update our system
provides timings, and performs every operation available to the user. This means
activating every menu option, and hence, testing each method in the program.
The program is fairly straight forward, and timings can be seen in the previous
section. Suffice to say that upon completion, the test rig runs through cleanly,
and with no errors on all of our test programs.

For completion and accuracy, table 2 shows us our object creation timings
from the test rig. In order to do this we create dummy IDebugObject objects,
each with a pseudorandom importance value, and they are all sent through to
the system as new, at once. Therefore, this demonstrates the time taken to
create the objects, calculate their position, and to display them. Figure 19
shows us the view having created 20,000 objects in the 3D space.

No. Of Objects | Time to Create Objects | s(object)™!
1 0.057s 0.057s
10 0.063s 0.0063s
100 0.094s 0.00094s
1000 0.77s 0.00077s
10000 19.216s 0.0019s
20000 85.152s 0.0043s

Table 2: Test Rig Timings

Figure 19: Displaying 20,000 unrelated objects.

38

6 Conclusions

Having thoroughly tested my code 1 feel | can now draw some conclusions about
the project as a whole. In order to do this effectively, | will look back to the
requirements outlined in §3, and judge the success of my project on how well
these criterion were met.

Accuracy

With the careful construction of the JavadD scene graph, and the separation
of concerns used throughout the project, 1 feel accuracy should occur as a by-
product. This project does well at allowing each class to be concentrated upon
regardless of other implementation concerns, solely aiming to fulfil its task.
Hence, any inaccuracies are likely to be picked up at the point in which they
may occur. Qur interaction with the underlying model is somewhat searnless,
and along with the results of the testing phase, T feel we can be assured as to
the accuracy achieved in reflecting the run-time disconnected memory graph we
set out to create.

Efficiency
As we have seen in our larger test runs, the response of the initial generation
of the scene-graph. no longer remains instant. However, this delay only occurs
upon this initial generation, and comes partly down to the Java3D renderer
having to render so many 3D objects, but mainly due to our layout algorithm.
Notably, if speed becomes a concern, we can switch to one of the other layout
managers outlined in §4.5, and dramatically reduce complexity. Once rendered,
the model behaves exquisitely however, and as such, I feel the efficiency con-
cerns which were raised have been overcome. In most cases the program is
instantaneous, and as programs become larger we only see a small increase in
delay.

Making use of efficient data structures within the program, and ensuring
that nodes aren’t revisited and recalculated unless necessary, I feel this solution
fairs extremely well in keeping track of the underlying memory graph.

Usability

As our efficiency requirement explains, this program is very responsive, but we
also make sure it is intuitive for the end-user. We provide a mouse-based input,
and a menu structure which adapts to the state of the program. Alongside
the JDT debugger itself, this solution provides ease of use for both a debugger,
and someone looking to visualise their program. Overall, I feel this program
is a valuable addition to the already extremely user friendly Eclipse debugging
perspective.

Extensibility
One of the best aspects of this program is its extensibility. It provides the frame-
work for visualising any underlying object-orientated system, given a model to
draw the information from. This is an important factor in making this project
portable to other systems.

In addition to this, we create a layout manager abstraction which allows
for added layout managers to be created, whilst abstracting away from the

39

intricacies of the underlying scene graph creation. This provides us with an
easy way to implement new three-dimensional layout techniques if they become
available. This method of coding is a valuable asset to any system.

Integration

Not. much needs to be said here as the program sits perfectly inside of Eclipse.
When debugging, users have the option of opening a ‘3D View’, which results in
our niodel being created and executed inside the Eclipse window. This provides
a method of using this 3D debugger and visualiser, side-by-side with the JDT
debugger itself.

Having seen that the code does in fact meet the original requirements laid out,
it can be said with conlidence that the project has achieved what was intended.
However, this is not to say that improvements cannot be made, and in §6.1,
these changes will be discussed. Given the time allotted for this project, I am
happy to say we have achieved something new. No program has ever set out
to visualise and debug programs in this way, and I feel the end product is an
extremely usable one. [do fee] there is room for improvement when compared to
advanced 2D debuggers and visualisers, however integration of these algorithms
has been made simple by careful thought of our design. We provide a usable
platform fron: the beginning, but also allow for future developinent of an exciting
new aspect to program analysis and visualisation.

6.1 Further Work

Having completed this project, and received good results. it is still felt that
there are areas in which more work can be done. Time constraints have not
allowed this work to be carried out as yet, however it would be recommended
that the maximal improvements would be achieved in the following areas.

6.1.1 Calculating Differences Between Prograin States

Zimmerman and Zeller discuss in their paper the idea of the greatest common
subgraph [17]. This idea comes from the fact that a debugger may want to
compare two prograin states, or runs, to see the differences. Omne such method
for doing this, is in the construction of the greatest common subgraph. This
gives us the opportunity to discover bugs, given a run that works correctly,
and one which does not, the difference between the two program states would
reveal the cause of the failure. Greatest common subgraph creation wonld be
a solution to this problem, and a worthy additicn to the framework we have
already created

6.1.2 On-the-fly Updating/Editing of Variables

The JDT debugger offers the ability to change valnes of variables in a live
system [4], As we saw in §4.6, we provide a table showing the values of a given
object. Hence, it would be interesting to be able to update the values of a live
system via changes here. This would simply move some of the JDT optionality,
into the 3D universe view. Currently, our table implementation is extensible

40

in this respect, however, the requirements of the underlying model must be
updated to include this extra functionality.

6.1.3 Animating Program Runs

Another interesting aspect of Java3D is the ability to add animation [3|. It would
be interesting to have an automated visualiser, possibly more so for teaching
purposes, which would step through a program, and animate its construction.
This would simpiy involve line creation animation, and object creatiou, modifi-
cation and deletion animation effects. Overall, I think this would provide a more
interesting way to display visualisations in a step-by-step manner, not generat-
ing new insight into the program, but increasing its accessibility and potential
usability.

7 Acknowledgements

I would like to use this section to thank Professor Oege de Moor for his help in
guiding me throughout this project, as well as Dr. Gavin Lowe for ensuring such
good progress was made. | would also like to thank Luke Cartey for allowing
use of his underlying debug model implementation in this project.

References
(1] Chris Aniszezyk and Pawel Leszek. Debugging with
the eclipse platform. IBM Developer Networks Online -

http://www.ibm.com/developerworks/java/library fos-ecbug/, 2007.

|2} Thomas Ball and Stephen G. Eick. Visualizing program slices. In Visual
Languages, pages 288-295, 1994.

[3] Dennis J Bouvier. Getting started with the javadd api, 2002.
http:/ /java.sun.com/developer fonlineTraining/javadd/.

(4] David Boxer, Ashutosh Galande, and Thuc
8i Mau Ho. The architecture of the eclipse jdt.
https://netfiles.uiuc.edu/dboxer2 /shared /es527 /J DT %20Architecture. pdf,
2004.

[5] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, 30(1-7):107-
117, 1998.

[6] Michae! Callaghan and Heiko Hirschmiiller. 3-D visualisation of design
patterns and java programs in cornputer science education. SIGCSE Bull,,
30(3):37-40, 1998,

[7] Stephan Diehl, editor. Software Visualization, International Seminar
Dagstubl Castle. Germany, May 20-25, 2001, Rewsed Lectures, voluine
2269 of Lecture Notes in Computer Science. Springer, 2002.

41

|8] Larry J. French. An interactive graphical debugging system. In DAC "70:
Proceedings of the Tth workshop on Design automation, pages 271-273, New
York, NY, USA, 1970. ACM.

|9] David R. Hanson and Jeffrey L. Korn. A simple and extensible graphical
debugger. In Winter 1997 USENIX Conference, pages 173-184, 1997.

(10} Zellig Harris. Distributional structure. Word, 10(2/3):146-162, 1954.

[11] Claire Knight and Malcolm Munroe. Visualizing software - a key research
area. In ICSM '99: Proceedings of the IEEE International Conference
on Software Maintenance, page 437, Washington, DC, USA, 1999, IEEE
Computer Society.

[12) J. Maletic, J. Leigh, A. Marcus, and G. Dunlap. Visualizing object oriented
software in virtual reality. In Proceedings of International Workshop on
Program Comprehension (IWPC01), pages 26-35, 2001.

[13] Dave Springgay. Creating an eclipse view.
http:/ /www.eclipse.org/articles/view Article/ViewArticle2.htm], 2001.

(14] R Stallman and R Pesch. Debugging with GDB, the GNU source-level
debugger. The Free Software Fondation, Inc, (1), 1993.

[15] Frank Tip. A survey of program slicing techniques. Journal of progrumming
languages, 3:121-189, 1995.

[16] Andreas Zeller and Dorothea Lutkehaus. DDD - a free graphical front-end
for UNIX debuggers. SIGPLAN Notices, 31(1):22-27, 1996.

[17] Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs. In
Software Visualization, pages 191-204, 2001.

8 Appendix

The following pages will contain the code for the majority of the methods in my
program, restricted only by the page limit imposed.

42

DO~ awWN

10
11
12
13

/*t
* The UpdateHandler Class:

* This class will be passed on to the underlying debug interface, and used in

* prder to inform our model of underlying changes. We essentially expect this
* method to be notified of all new, changed and deleted objects. The job of

* this class is to then pass this information to the View3D object provided.

*

* @author Darius Bradbury.

~

public class UpdateHandler implements DebugModelContainerlListener {
View3D view3D;

/Ot
* Assigns the local view3D object, and instantiates the UpdateHandler,
L]
* @param view3d -
* the associated View3D abject.
*/
public UpdateHandler(View3D view3d) {
view3D = view3d;

}
/tt

* This method is called by the intermediary framework. 1t is used to update

* the 3D universe, passing on and new/changed/deleted objects to the View3D

* object.

-

* A call to this method signifies that the underlying state of the program

* has changed.

*

* @param debugTarget -

* the underlying debug target.

* @param objectsChanged -

* A mapping of change type {new/changed/deleted) to

* IDebugObjects.

*/

public void updateDebugModel(IDebugTarget debugTarget,
Map<DebugChangeType, List<iDebugObjact>> objectsChanged) {

/*
* Reset all abjects state.
*
* We must ensure that each chject is considered unchanged, uniess told
* otherwise, This updates the fact that we have entered a new system
* state.
*/
for (Object3D o3d : View3D.idoToObject3D.values()) {
o3d.state = "unchanged";

}

// Create iterator variable used to iterate through the objects.
Iterator<iDebug Object> iterator;

// Check for new objects in the system.
if (objectsChanged.containsKey(DebugChangeType .CREATED)) {

// Set our iterator to the object which are NEW.
iterator = objectsChanged.get{DebugChangeType.CREATED).iterator();

// Iterate through, sending each IDebugObject to the view3D object.
while {iterator.hasNext()) {
\DebugObject itemp = iterator.next();
view3D.createNew{itemp);
// Set the state of these Object3D objects to NEW.
View3D.idoToObject3D.get(itemp}.state = "new";
1
}

/t
* Iterate through the changed objects, no need to send them through to
* the View3D object however, just set their state as CHANGED.
*
if {objectsChanged.containsKey{DebugChangeType.CHANGED)) {
iterator = objectsChanged.get{DebugChangeType . CHANGED).iterator();

while {iterator.hasNext()) {
IDebugObject itemp = iterator.next();
View3D.idoToObject30.get(itemp).state = "changed"”;
H

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

}

/t

* |terate through all the deleted IDebugObjects, notify view3D of their
* removal.

*/

if (objectsChanged.containsKey(DebugChangeType. DELETED)) {

iterator = objectsChanged.get{DebugChangeType.DELETED).iterator(};
while (iterator.hasNext(}} {
1DebugObject itemp = iterator.next{);
view3D.remove(itemp);
}
!

/{ Having processed all objects, finalise view:

// First extract all the Object3D objects still in our system.,

// We do this by accessing our static mapping of IDebugObjects to

// Ohject3Ds.

Collection<Object3D> totallistOfObjects = View3D.idoToObject3D.values();

// \f positioning depends on rank, update the rank and positions to
// accommodate these changes.
Object3D.JoyautManaoger.updateAllPositions();

/i
* We then perform an update on each object. We do this at such at the
* end in case the position of the objects depends on other objects, As
* such, we must wait until all the objects have been sent through to
* the view. Note - that the object isn't created until this step.
.
*/
System.out.printin{"[View| Updating objects."};
for [Object3D o3d : totallistOfObjects) {
o3d.update();
}
// Recreate lines if necessary.
for (Object3D o3d : totalListOfQbjects) {
if (03d.linesVisible) {
o3d.hideLines();

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

o3d.showlLines(});
} else if (View3D.aliLinesVisible) {
03d.showlLines{};
}
}

//1f we were in a sub-view, we re-create that same view,
if (view3D.just5SubObjects) {

/{ We check that the root node of this sub-view hasn't been deleted.
if (View3D.idoToCObject3D
.containsValue(view3D.currentRightClickedNode}) {
view3D.createTrace();
] else {
// Object we were tracing no longer EXISTS.
// return to full graph,
view3D.justSubObjects = false;
)
}

// Print to console number of objects generated.
System.out.printin{"[VIEW] There exists " + View3D.idoToObject3D.size(}
+ " visual objects in the overall graph.");

WO LW =

/tm

* The Object3D Class:

* This class will hold objects definitions, with their 3D

* representations. It acts as a wrapper for the DebugObjects from the

* underlying model, and provides methods for maintaining its 3D representation.

*

* @author Darius Bradbury.
*/

public class Object3D {

public static LayoutManager3D leyautManager; // Layout manager in use.
public IDebugObject ido; // The underlying DebugOhbject,

private TransformGroup tg; // This objects TransformGroup

private BranchGroup bg; // This objects BranchGroup.

// The sub-BranchGroup for the visual object representing the name of the
// object.

private BranchGroup bgName;

private View3D view3D; // The view3D object.

public Vector3d v3d; // Vector representing object’s position.

public String name; // Object's name.

public boolean detailsVisible = false; // name on or off flag.

public boolean linesvisible = false; // trace lines on or off flag.

// Collection of created lines.

private LinkedList<BranchGroup> lineslist = new LinkedList<BranchGroup>(});
/{ Appearance NodeComponent for this visual object.

private Appeararnce appearance;

// Tree layout manager for forward traces.

public static TreeLayoutC treelayaut;

// Tree layout for backward traces.

public static BackTreelayoutC backTreelayout;

public float objectSize; // Size of the object.

// Definitions for the general view layout manager type.

static final int gridtype = 0;

static final int stacktype = 1;

static final int rankbased = 2;

static final int clusterbased = 3;

// Setting the layout manager type.

static int layoutMonogerType = clusterbosed;

// Seen list for BFS tree generation.

public static LinkedList<IDebugObject> seenObjectList =

42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61

new LinkedList<!DebugObject>(};
public String state = "unchanged"; // Current state.

/aa

* Instantiates an Object3D object, attaches the associated IDebugObject,

* and links to the View3D controller class.

.

* @param ido -

* The iDebugCbject this class provides a wrapper for.

* @param view3D -

* The associated View3D controller class.

*
/

public Object3D{IDebugObject ido, View3D view3D) {
this.ido = ido;
this.view3D = view3D;
// Create new TransformGroup node for this Object.
tg = new TransformGroup{);
// Add # to the view3D map to allow picking.
view3D.tgToObject3D.put(tg, this);

// Create the BranchGroup node, and attach the TransformGroup node.
bg = new BranchGroup();
bg.setCapability(BranchGroup ALLOW _DETACH);
bg.addChild(tg);
// Create a new Vector3D to hod this objects position.
v3d = new Vector3d();
// Set the name
name = ido.getValue().toString();
// Create the assoctated layoutManager on first run.
if (layautMenager == null) {
switch {loyoutMoenager Type) {
case gridtype:
layoutManager = new GridLayout();
break;
case stacktype:
layoutMonager = new StackedLayout{);
break;
case ronkbased:
layautManaoger = new RankBasedLayout();
break;
case clusterbased:

114
115
116
117
118
119
120
121
122
123

layoutManager = new ClusteringBasedLayout();
break;
!
}
}

/tﬁ

* This method creates the 3D sphere. It uses the current state of the
* global Object3D parameters for position, size, etc.. to do this.

*/

private void createObject() {

// Create the Sphere and set associated capabilities.

Sphere newObj = new Sphere(objectSize);
newObj.setPickable(true};

newObj,setName(name);

newObj.setCapability(Shape3D.ALLOW _APPEARANCE_WRITE);
newQbj.setCapability(Shape3D.ALLOW APPEARANCE_READ);
newOhj.setCapability(Group.ALLOW_CHILDREN_WRITE);
newObj.setCapability{Primitive ENABLE_ APPEARANCE_MODIFY);

// Remove the current TransformGroup, create a new one, and attach.
view3D.tgToObject3D.removeltg);

tg = new TransformGroup();

view3D.tgToObject3D.put(tg, this);

// Get appearance and set capabilities.
appearance = newObj.getAppearance();
appearance.setCapability{Appearance. ALLOW_MATERIAL_WRITE);

tg.setCapability{TransformGroup. ALLOW_TRANSFORM_READ);
tg.setCapability{TransformGroup. ALLOW TRANSFORM_WARITE);
tg.setCapability(Node ENABLE_PICK_REPORTING);
tg.setCapability(BranchGroup ALLOW_DETACH),;
tg.setCapability{Group. ALLOW CHILDREN_EXTEND),
tg.setCapability(Group ALLOW _CHILDREN_WRITE);
tg.setCapability{Shape3D.ALLOW APPEARANCE_WRITE);

// Create new Transform.
Transform3D transform = new Transform3D();
// Set the Transform to move to the Objects current position.

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

transform.set{v3d};

// Perform this translation.
tg.setTransform(transform);
// Place the sphere in place.
tg.addChild{newObj);

// Create new BranchGroup.

bg = new BranchGroupl(};
bg.setCapabilityiBranchGroup ALLOW_DETACH);
/{ Add newly created TranformGroup.
bg.addChild{tg);

bg.setName(name);

/[Set Colour depending on objects state.
if {state.equals{"new"})) {
Color3f ambientColor = new Color3f(0.0f, 0.6f, 0.0f);
Color3f emissiveColor = new Color3f{0f, Of, 0f);
Color3f diffuseColor = new Color3f{0.5f, 0.5f, 0.5f);
Color3f specularColor = new Color3f{0.7f, 0.7f, 0.7f);
float shininess = 64;
Material mat = new Material(ambientColor, emissiveColor,
diffuseColor, specularColor, shininess);
/f Set material, sets colour and lighting attributes.
appearance.setMaterial{mat);
} else if {state.equals{"changed")} {
Color3f ambientColor = new Color3f(1f, 0.4f, Of);
Color3f emissiveColor = new Color3f{0f, Of, Of);
Color3f diffuseColor = new Color3f(0.5f, 0.5f, 0.5f);
Color3f specularColor = new Color3f(0.7f, 0.7f, 0.7f);
float shininess = 64;
Material mat = new Material{ambientColor, emissiveColor,
diffuseColor, specularColor, shininess);
appearance.setMaterial{mat);
telse {
Color3f ambientColor = new Color3f{0.7f, 0.7f, 0.7f);
Color3f emissiveColor = new Color3f{0.0f, 0.0f, 0.0f);
Color3f diffuseColor = new Color3f(0.7f, 0.7f, 0.7f);
Color3f specularColor = new Color3f(0.9f, 0.9f, 0.9f);
Material mat = new Material{ambientColor, emissiveColor,
diffuseColor, specularColor, 64.f);
mat.setColorTarget{Material. SPECULAR);

165 appearance.setMaterial{mat); 206 tg.removeChild{bgName);

166 } 207 createDetails({};

167 } 208 }

168 209

165 /* 210

170 * This method returns this Object3Ds root node, in the Java3D scene graph. 211 /*=

171 * 212 * Method used to calculate pure step size. Whereby, as objects get less and
172 * @return The root BranchGroup. 213 * less important, their size is halved. This was originally used in the
173 */ 214 * divide and resize algorithm, However, we now make use of the impartance
174 public BranchGroup getBranchGroup() { 215 * size metric.

175 return bg; 216 "/

176 } 217 public void calculateStepSize() {

177 218

178/ 219 double rank = 1;

179 * This method is called once the system is stable, and is expected to 220 Linkedlist<Object3D> Il = LayoutManager3D.currentRanking;
180 * update the state variables of the Object3D instance, thus allowing the 221 boalean stillSearching = true;

181 * createObiject{} method to create a correctly positioned and coloured 222

182 * object. We also maintain the Object3D’s name object. 223 for {Object3D rankedObject : Il} {

183 */ 224 if (rankedObject.equals(this)) {

184 public void update() { 225 stillSearching = false;

185 // Remove currently stored BranchGroup from overall map. 226 } else if (stillSearching) {

186 view3D.mainTransformGroup.removeChild(bg); 227 rank++;

187 // Remove current TransformGroup node from our BranchGroup. 228 }

188 bg.removeChild(tg); 229 }

189 // Get current Object position from the Layout Manager. 230 objettSize = 10;

190 Vector3d pos = layoutManager.getPosition(this); 231 while (rank > 1) {

191 // Set our stored position to match this. 232 objectSize = objectSize / 2;

192 vad.setX(pos.getX()); 233 if (rank <= 7) {

193 v3d.setY(pos.getY()); 234 rank = 0;

194 v3d.setZ{pos.getZ()}; 235 }else {

195 236 rank =rank / 5;

196 // Calculate size. 237 }

197 // calculateStepSize(); 238 }

198 calculatelmportanceSize(); 239}

199 240

200 // Now all the variables have been set, create the visval object. 241 Jr*

201 createObject(); 242 * This method calculates and sets the object size based on its importance
202 // Add newly created BranchGroup to the overall mapping. 243 * relative to the importance of all the other objects in the system,
203 view3D.mainTransformGroup.addChild{bg}; 244 */

204 // If details had been created for this object, create them again. 245 public void calculatelmportanceSize{} {

205 if {detailsVisible) { 246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
278
280
281
282
283
284
285
286
287

// Get ordered list of ranked objects from Layout Manager.
LinkedList<Object3D> |I;
Il = LayoutManager3D.currentRanking;

// Take top scoring object score.
double upperBound = |l getFirst{).ido.getPageRank();
// Get score for this object.
double importanceScore = ido.getPageRank();
// Catculate ratio
double ratio = impartanceScore / upperBound;
// Biggest object = size 10, every other object a ratio of that.
// The range of object sizes is 0.5-10.
objectSize = (float) {{9.5 * ratio} + 0.5);
}

/tt

* This method generates a BranchGroup node containing the visual object
* representing the name of this Object3D. It then adds it to the Object3D's
* own BranchGroup node, and hence, the virtual world.

*/

public void createDetails{) {

// Create Fort object
// Size of font based on size of object.
Font f = new Font("calibri", Font.BOLD,
(int) {{object5ize * 2} / 10) + 1);
// Create Font Extrusion, used to turn 2D font, into 3D object.
FontExtrusion fe = new FontExtrusionf);

// Create 3D Font object.
Font3D f3d = new Font3D{f, fe};

// Set position at edge of visual object.

Point3f point3f = new Point3f(0, 0, objectSize);
// Generate 3D Text object.

Text3D text = new Text3D{f3d, name, point3f);
text.setAlignment(Text30.ALIGN_CENTER);
Shape3D textShape = new Shape3Di);
textShape.setGeometry(text);

// Set colour and response to light of the Text Object.

288
288
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Color3f ambientCalor = new Colar3f(0f, Of, 0f);

Color3f emissiveColor = new Color3f{0.0f, 0.0f, 0.0f);

Color3f diffuseColor = new Color3f{0.0f, 0.0f, 0.0f);

Color3f specularColor = new Color3f{0.0f, 0.0f, 0.0f);

Material mat = new Material{ambientColor, emissiveColor, diffuseColor,
specularColor, 64.);

Appearance textAppearance = new Appearancel);

textAppearance.setMaterial{mat);

textShape.setAppearance({textAppearance};

// Create BranchGroup to govern this text object.
bgName = new BranchGroupl();

bgName setCapability{BranchGroup ALLOW_DETACH);
bgName.addChild{textShape);

// Add our Text Object ta this Object3D's TranformGroup.
tg.addChild{bgName};
}

/-t
* Method to show details of this Object3D, namely, show its name.
*/
public void showDetails({) {
if (!detailsVisible) {
createDetails();
detailsVisible = true;
}
1

/l!t
* Method to hide the details of this Object3D.
*/
public void hideDetatls() {
if (detailsVisible) {
tg.removeChild{bgName);
detailsVisible = false;
}
}

/tt

* This method performs a depth-first-iteration through the tree of forward

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
3604
365
366
367
368
369

* links, creating each object on the way.
*/
public void displayObjectLinks(} {

/{ Clear current seen object list, used to avoid repeat visiting nodes.
seenObjectlist.clear();

createSubObjects(};

view3D.justSubObjects = true;

view3D.traceDirection = 0;

}
Pk

* This method performs a Depth-First iteration of the backward links of
* this node, generating each object as it goes.

*/

public void displayCbjectBackLinks() {

// Clear current seen object list, used to avoid repeat visiting nodes.
seenObjectlist.clear();

createBacklinkSubObjects();

view3D.justSubObjects = true;

view3D.traceDirection = 1;

}
/!t

* This method generates this Cbhject3D instance, then calls the relevant
* creation method in each of the Object3D's it has forward links to. In

* other words, it generates a forward trace.

*/

private vaid createSubObjects{) {

// Every child removed when object right-clicked.
// We just add correct objects.

// Remove any lines if they are currently on display.
if {linesVisible} {

removelines();
}
// Remove the TransformGroup for this Object3D.
bg.removeChild(tg);

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

// Get position from the tree layout manager.
Vector3d pos = treeLoyout getPosition{this};
v3d.setX(pos.getX());

v3d.setY({pos.get¥());

vid.setZ{pos.getZ(});

// Create ohject, now based on its trace position.
createObject{);

// Add newly updated BranchGroup to the mapping.
viewdD.mainTransformGroup.addChild({bg);
// Restore details if they were visible,
if {detailsvisible) {
tg.removeChild(bgName):
createDetails();

}

// Create local map variabie for this Object3D.
Map<IDebugObject, IVariable> linklist = null;

// We ensure the ido 1s not null, however, i it is we throw an
// excepgtion.
try{
linklist = ido.objectLinks();
} catch (NullLinkException e} {
e.printStackTrace();

}

// We add this ido to our seen list, ensuring we don't try ta create it
// again.
seenObjectList.add{ido);

// terate through object links, creating each abject.
for (Entry<IDebugObject, IVariable> variableLink : linklist.entrySet{}) {
IDebugObject i = variablelink.getKey();
if {i 1= null && seenObjectlist.contains(i)) {
// 1f we haven't seen this object yet, search it,
View3D.idoToObject3D.get(i).createSubObjects(};
seenObjectList.add{ido};
}

// Draw lines from this Object3D to each of it's children.

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
248

450
451

createLines(this, i);

/om
* This method creates a backward trace, performing a depth-first iteration
* of the backward links of this object and it's associated |DebugObject.
*/
private void createBackLinkSubObjects() {
try {
// Every child removed when object right-clicked.
// Don't need to worry about that, just add correct objects.

if (linesVisible) {
removelines();

!
bg.removeChilditg);

Vector3d pos = backTreetayout.getPosition(this);
v3d.setX(pos.getX(});
v3d.setY(pos.getY(});
v3d.setZ{pos.getZ(}};

createObject();

view3D.mainTransformGroup.addChild{bg};

if {detailsVisible) {
tg.removeChild{bgName);
createDetails();

}
Map<|DebugObject, |Variable> linklist;

linklist = ido.backLinks();
seenObjecttist.add({ido);

// lterate through object links, creating each object.
for (Entry<iDebugObject, IVariable> variableLink : linklist
.entrySet(}) {
IDebugObject i = variableLink. getKey();
if{i != null && lseenObjectlist.contains(i}) {

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

View3D.idoToObject3D.get(i).createBackLinkSubObjects();
seenQObjecttist.add(i);
}
// Create the lines from this object to each of its children.
createlines(this, i);

!

} catch (NullLinkException) {
throw new RuntimeException(e);

}

/* *
* This method changes the colour of the Object3D's sphere to be red. We use
* this method to highlight the root node in a trace.
*/
public void highlightCurrentObject() {
Color3f ambientColor = new Color3f(0,33f, 0, 0);
Color3f emissiveColor = new Color3f(0, ¢, 0);
Colar3f diffuseColor = new Color3f{0.5f, 0.5f, 0.5f);
Color3f specularColor = new Color3f{0.7f, 0.7f, 0.7f);
float shininess = 64
Material mat = new Material{ambientColor, emissiveColor, diffuseColor,
specularColor, shininess);
appearance setMaterial{mat);

}

/**

* This method removes any highlight that had been imposed.
*/

public void removeHighlight() {

Color3f emissiveColor = new Color3f{0.0f, 0.0f, 0.0f};

Color3f ambientColor = new Color3f(0.1f, 0.1f, 0.1f);

Color3f diffuseColor = new Colar3f{0.7f, 0.7f, 0.7);

Color3f specularColor = new Color3f{0.9f, 0.9f, 0.5f);

Material mat = new Material{ambientColor, emissiveColor, diffuseColor,
specularColor, 64.f);

mat.setColorTarget{Material. SPECULAR);

appearance.setMaterial{mat);

493
454
495
496
457
458
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

/t*
* This method generates lines between the giver Object3D and list of
* IDebugObjects, in the 30 world.

*

* @param object3D -

* The source object. Where the lines must come from.
* @param linklist -

* The target objects. Where the lines are going to.

*/

private void createLines(Object3D object3D, Set<iDebugQObject> linklist) {

for (IDebugObject ido : linklist) {
// We must check objects don't have links to themselves,
// Otherwise we try to create lires with null transforms.
if (lobject3D.equals{View3D.idoToObject3D get{ido))) {

createlines{object3D, ido);

}

}

}

/tt

* This method generates a single line, from the given Object3D to the
* IDebugObject given. This involves finding the position of both in the 3D
* universe, and then generating a directed line representing the link
* between them.

*

* @param object3D -

* The source node.

* @param ido -

* The target node.

*/

private void createlines{Object3D object3D, IDebugObject ido} {

// Create appearance for the lines.
Appearance app = new Appearance();
ColoringAttributes ca = new ColoringAttributes(
new Color3f(43, 173, 43), ColoringAttributes.SHADE_ FLAT);

// Create point array to contain start ard end position of line.
Point3f[] linePoints = new Point3f[2];

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

/Qt
* Object clicked on Position, relative to this object ie. Current
* Pasition!
*/
linePoints[0] = new Point3f(0, 0, 0);
/k
* Object linked to Position, relative to this object ie. Linked to
* Object vector, minus current object vector.
N
/
float destx = ({float) View3D.idoToObject3D get{ido}.v3d.getX(})
- {float) v3d.getX();
float desty = {{float) View3D.idoToObject3D.get(ido).v3d.getY(}}
- (float) v3d.getY();
float destz = ((float) View3D.idoToObject3D.get{ido).v3d.getZ(})
- (float) v3d.getZ();
linePoints[1] = new Point3f{destx, desty, destz};

// Create line based on positions.
LineArray fineArray = new LineArray(2, GeometryArray. COORDINATES);
lineArray.setCoordinates{0, linePoints);

app.setColoringAttributes{ca);
Shape3D lines = new Shape3D{lineArray, app);

// Create BranchGroup to Govern this line.
BranchGroup bgtemp = new BranchGroup({};
bgtemp.setCapability(BranchGroup.ALLOW_DETACH);
bgtemp.addChild(lines);

/t
* As line is directed, we must create an arrowhead. To do this we use a
* Cone object.

*/

// Cone size must be proportional to distance apart of objects.
Vector3f linevector = new Vector3f(destx, desty, destz);

float length = lineVector.length();

float conelength = length / 10;

// Set a cone size limit!

575
576
577
578
579
580
581
582
583
584
585
586
537
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

605
606
607
608
609
610
611
612
613
614
615

if (conelength > 5} {
conelength=5;
}
// Create cone.
Cone arrow = new Cone(conelength / 5, conelength, object3D.appearance);

// Create TransformGroup ta correctly position cone.
TransformGroup tgArrow = new TransformGroup(};
Transform3D t3dArrow = new Transform3D();

// Vector we need to translate cane by.
Vector3f vArrow = new Vector3f{destx, desty, destz);

// Make sure the two objects are in fact not in the same place!
if (vArrow.length{) == 0} {
System.out.printin{"[VIEW] vArrow.length{} == 0!"};
}else {
// scale such that transtation moves to edge of object,
// not centroid.
vArrow . scale{((vArrow.lengthi}
- View3D.idoToObject3D getlido).objectSize)
- conelength / 2}
/ vArrow.length());

// Calculating rotational properties.

Vector3f objectTo = new Vector3f(destx, desty, destz);
// Angle of rotation

float angle = (new Vector3f{0, 1, 0}}.dot{objectTo);
angle = angle / objectTo.length();

angle = (float} java.lang.Math.ocos{angle);

// Axis of rotation

Vector3f direction = new Vector3f(};

Vector3f yAxis = new Vector3f(0, 1, 0);

objectTo.normalize(};

direction.cross{yAxis, objectTo};

if {(int) java.Jang.Math.toDegrees{angle) == 180} {
// Dealing with perpendicutar issue with
//{0,1,0) and (0,1,0)!
direction = new Vector3f(1, 0, 0);

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

645
646
647
648
645
650
651
652
653
654
655
656

}

// Set rotation first.

t3dArrow.setRotation{new AxisAngledd(direction.getX(), direction
.getY(), direction.getZ(), angle));

// Then set translation.

t3dArrow.setTranslation{vArrow);

// Then perform transform as a whole.

tgArrow. setTransform(t3dArrow);

// Create BranchGroup for the cone, and add just created
/{ TransformGroup

//toit.

BranchGroup bgArrow = new BranchGroup();
tgArrow.addChild{arrow);

bgArrow.addChild(tgArrow);

// Add the cone to the BranchGroup governing the lines.
bgtemp.addChild(bgArrow);

// Add this whole BranchGroup to the Object3D's TransformGroup node.
tg.addChild{bgtemp);
// Maintain a list of all the fine BranchGroups for easy removal.
linesList.add{bgtemp};
}
}

/ti

* Making use of the maintained visible lines list, this method remaves all
* lines in the system from the main TranformGroup node.

*/

public vaid removelines() {

for (BranchGroup b : linesList) {
tg.remaoveChild(b);

)

linesList.clear();

}
/tt

* This method remowves the lines for all the Object3D's in a trace,

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

*/
public void removeObjectlinks() {
for {IDebugObject i : seenObjectlist) {
if (View3D.idaToObject3D.containsKey(i}) {
View3D.idoToObject3D.getli).removelines();
} else {
/7 We know this object has already been removed since the
// seen list creation.
}
1
}

[

* This method restores the general view, replacing all the objects in it.

*/
public void replaceAllObjects(} {

Collection<Object3D> ¢ = View3D.idoToObject3D.values();

for (Object3D 03d : ¢} {
try{
o3d.update();
} catch (Exception e) {
System,out.printin{"[VIEW - ERROR]" + e.getMessage(}};
)
]
// Recreate the lines,
for (Object3D 03d : ¢} {
if (03d.linesVisible) {
/{ We know the lines exist, thus we have to hide, and recreate.
o3d.hidelines();
03d.showlLines(};
} else if (View3D.ailLinesVisible) {
/{ We know the lines weren't visible, but the user wishes ALL
/{ lines to be visible, so we show them,
o3d.showlines();
}
}

// No longer in trace view.
view3D.justSubObjects = false;
}

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

/* *
* This method creates an up-to-date Treelayout Object for forward traces.
*/
public void createCurrentTree() {
treeloyout = new TreelLayoutC();

}
Fadd

* This method creates an up-to-date Treelayout Object for backward traces.
*/
public void createCurrentBackLinkTree() {
bockTreeloyout = new BackTreeLayoutC();
bockTreeloyout.getPosition{this);

}

/t*
* This method shows the forward links for this Object3D.
*/
public void showLines{) {
try {
createlines(this, ido.objectLinks().keySet()}:
} catch (NullLinkexception e} {
throw new RuntimeException(e);
}
linesVisible = true;

1

/**
* This method hides the forward links for this Object3D.
*/
public void hideLines(} {
removelines{);
linesVisible = false;

}

JE 42 boolean justSubObjects = false; // Current state flag

* The View3D Class: 43 Object3D currentRootNode; // Used for keeping track of trace root.
* This class aims to maintain communication between the update handler, the 44 public Object3D currentRightClickedNode; // For passing of currently
* Object3D instances, and interaction with the user. 45 // selected node.
« 46 private IScroliPane objectDetails; // Object details Table.
* @author Darius Bradbury. 47 private PickCanvas pickCanvas; // The PickCanvas used.
«/ 48 public int traceDirection; // Passing of current trace direction.
public class View3D extends ViewPart implements Actionlistener, Mouselistener { 49 public static boolean aflLinesVisible = false; // ALL lines flag.

private baolean TESTING = false; // Testing mode flag to run test rig. 50

public static java.awt.Frame f; // The frame for our 3D Canvas. 51 // Main Menu

public statle Int width;// Initial width of graphics window. 52 JPopupMenu mainMenu;

public static int height; // Initial height of graphics window. 53 JMenultem gridView;

// Ratio of width compared tao height in widescreen window. 54 JMenultem stackView;

public static final double wideScreenRatio = 1.77; 55 JMenultem divideResize;

// Size of bounding sphere. 56 JMenultem clusteringBased;

public static double boundingSphereSize = Double. MAX_VALUE; 57 JMenultem resetviewl;

Canvas3D canvas3D; // 3D rendering canvas 58 JMenultem showQOhjectNames1;

Panel b_container; // Container to hold the buttons 59 JMenultem hideCbjectNames];

Panel c_container; // Container to hold the canvas 60 JMenuitem showlines;

Panel |_container; // Container to hoid the labels 61 JMenultem hideLines;

Panel instruct_panel; // Panel to hold instructions 62 JMenultem redrawSpace;

Button instruct_button; // Instructions button 63 // Object menu

Button new_object_button; // New Object Button 64 JPopupMenu objectMenu;

Button create_3DS_object; 65 JMenultem forwardTrace;

Button clear_screen; 66 JMenultem backwardTrace;

Button remove_last; 67 JMenultem showObjectDetails;

TextArea instruct_text; // TextArea object that holds instructions 68 JMenultem showObjectlines;

Button instruct_return_button; // Return button for instruction panel 69 JMenultem hideObjectLines;

String textString; // Storage area for instructions 70 // Sub Objects main menu

private SimpleUniverse universe = null; 71 JPopupMenu subObjectsMenu;

Transform3D transform; 72 JMenuitemn exitTrace;

int count; // current number of objects 73 IMenultem showQbjectNames2;

BranchGroup scene3D; // scene branchgroup 74 JMenultem hideObjectNames2;

TransformGroup mainTransformGroup; // main transform group! 75 JMenultem resetView?2;

BranchGroup mainBranchGroup; // main Branch Group! 76

// Main HashMap for mapping IDebugObjects to thier Object3D containers. 77 public View3D({) {

public static HashMap<iDebugObject, Object3D> idoToObject3D = 78 // Calls the ViewPart class.

new HashMap<|DebugObject, Object3D>{); 79 super{);
// Keeping track of which transformGroup owns what. Used to enable picking. 80 }
HashMap<TransformGroup, Ohject3D> tgToObject3D = 81
new HashMap<TransformGroup, Object3D>(); 82 /**

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

* This is a callback that will allow us to create the view perspective, and

* initialise it.
*

* What is expected is that we create a frame based on the input Composite

* object, which will contain our view.
*/
public void createPartControl{Composite parent) {

// Create new Composite object given parent node.

Composite composite = new Composite{parent, SWT.EMBEDDED);
// Set the 2D layout manager as a Filllayout.
composite.setLayout{new FillLayout());

/{ Create a frame to add our canvas into, along with any

/{ other components we wish to display.
f=SWT_AWT.new_Fframe(composite);

// Set the internai frame layout to a Flowlayout.

f.setLayout{new FlowLayout{}};

/t

* Create an Update handler object to deal with all underlying change
* notifications. Subscribe the update handler to our intermediary

* debugging framework.

*/

UpdateHandler uh = new UpdateHandler{this};
DebugModelContainer./NSTANCE.addListener{uh};

// Initialise the view {Create a virtual 3D universe and a physical
// canvas)
init();

/{ pack the resulting frame.
f.pack();

// Deal with maintaining the correct aspect ration during resizing.
composite.addControllistener{new ControlAdapter(} {

public void controlResized(ControlEvent e} {

canvas3D.setSize((int) {f.getBounds(}.height * wideScreenRotio), f
.getBounds(}.height);

}
B
/{ Set the initial size.

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

canvas3D.setSize((int) {f getBounds().height * wideScreenRatio),
f-getBounds().height);

// Commence testing if mode selected.
if(TESTING)
{
new TestRig(uh);
}
}

/l#

* Initialisation of the Java3D minimal scene graph.

*

* This function aims to initialise the parameters required in setting up
* the Java3D scene graph. It also configures the user input methods,
* allowing interaction with the environment.

*/

public void init{) {

// Create a 3D graphics canvas.
canvas3D = new Canvas3D(SimpleUniverse.getPreferredConfiguration());

// Create the scene BranchGroup.,
scene3D = ¢createScene3D();

// Pick enabling

pickCanvas = new PickCanvas(canvas3D, scene3D};
pickCanvas.setMode(PickTool. GEOMETRY);
pickCanvas.setTolerance(0);

// Add mouse Listener
canvas3D.addMouseLlistener(this);

// Create a universe with the Java3D universe utility.

universe = new SimpleUnivarse(canvas3D};

BoundingSphere bounds = new BoundingSphere{new Point3d{0.0, 0.0, 0.0},
boundingSphereSize),

// Create a method for rotating the whole 3D environment.
MouseRotate behavior = new MouseRotate();
behavior.setTransformGroup(mainTransformGroup);

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

mainBranchGroup.addChild{behavior);
behavior.setSchedulingBounds(bounds);

// Create a method for translating the whole 3D environment.
MouseTranslate behaviorl = new MouseTranslate();
behaviorl.setTransformGroup{mainTransformGroup);
behaviorl.setFactor{0.5);
mainBranchGroup.addChild{behaviorl);
behaviorl.setSchedulingBounds{bounds);

// Create a method for zooming the users viewpoint.

MouseWheelZoom behavior2 = new MouseWheelZoom(};

// Note, the transform group relies on the viewPlatformTransform, not

// the MainTransformGroup.

behavior2.setTransformGroup{universe.getViewer().getViewingPlatform(}
.getViewPlatformTransformi});

behavior2.setFactor({20);

mainBranchGroup.addChild{behavior2);

behavior2.setSchedulingBounds{bounds});

// Create a method for maving around the view point with the arrow keys.

KeyNavigatorBehavior keyNavBeh = new KeyNavigatorBehavior(universe
.getViewer().getViewingPlatform(}.getviewPlatformTransformi));

keyNavBeh.setSchedulingBounds(bounds);

mainBranchGroup.addChild(keyNavBeh);

// &dd our scene3D branch, to the universe.
universe.addBranchGraph{scene3D);

// Move the initial view back slightly, so that all the objects can be

// seen.

TransformGroup tg = universe.getViewingPlatform()
.getViewPlatformTransform();

transform = new Transform3D(};

transform.set{65.f, new Vector3f{0.0f, 0.0f, 600.0f));

tg.setTransform(transform);

// Add the 3D canvas created by Java3D to our Eclipse frame.
f.add{canvas3D};

// Create the pop-up menus to allow extra interactions with the 3D

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

// environment.
createPopupMenus();

}
/-a

* This method sets the global pop-up menu parameters. It sets their names,
* and their ordering.

*/

private void createPopupMenus() {

// This line allows heavyweight creation of Swing objects.
JPopupMenu.setDefaultlight WelghtPopupEnabled(false);

// Create the main pop-up menu,
mainMenu = new JPopupMenu();

gridView = new IMenultem{"Grid View"};

stackView = new JMenultem("Stack View");
divideResize = new JMenultem("Constant Space View");
clusteringBased = new JMenuttem({"Clustering Based");
gridview.addActionListener(this);
stackView.addActionListener{this);
divideResize.addActionListener(this);
clusteringBased.addActionListener(this);
mainMenu.add{gridview);

mainMenu.add{stackView);
mainMenu.add{divideResize);
mainMenu.add{clusteringBased);
clusteringBased.setEnabled(false);
mainMenu.addSeparator(};

resetViewl = new JMenultem("Reset View"};

resetViewl addActionListener(this);
mainMenu,add(resetView1);

showObjectNames1 = new IMenultem("Show Object Names"};
showQbjectNamesl.addActionListener(this);
mainMenu.add(showObjectNames1);

hideObjectNames1 = new JMenultem{"Hide Object Names");
hideObjectNames1.addActionListener(this);
mainMenu.add{hideCbjectNames1};

showtlines = new JMenultem({"Show Lines");

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

showLlines.addActionListener{this};
mainMenu.add(showLines);

hideLines = new JMenultem("Hide Lines");
hideLines.addActionlistener(this);
mainMenu.add{hideLines);

redrawSpace = new JMenultem("Redraw Space"});
redrawSpace.addActionListener{this);
mainMenu.add{redrawSpace);

objectMenu = new JPopupMenu();

forwardTrace = new JMenultem{"Forward Trace"};
forwardTrace.addActionListener(this);
objectMenu.add(forwardTrace);

backwardTrace = new IMenultem{"Backward Trace");
backwardTrace.addActionListener{this);
objectMenu.add(backwardTrace);

showObjectDetails = new JMenultem("Show Details"});
showObjectDetails.add ActionListener(this);
objectMenu.add(showObjectDetails);

showObjectLines = new IMenultem("Show Object Lines");
showObjectLines.addActionlistener{this);
objectMenu.add{showObjectlLines);

hideObjectLines = new JMenultem({"Hide Object Lines"};
hideObjectLines.addActionListener(this);
objectMenu.add{hideObjectLines):

subObjectsMenu = new JPopupMenu(};

exitTrace = new JMenultem("Exit Trace");
exitTrace.addActionListener(this);
subObjectsMenu.add(exitTrace);
subObjectsMenu.addSeparator(};
showObjectNames2 = new JMenultem("Show Names");
showObjectNames2.addActionListener{this);
subObjectsMenu.add{showObjectNames2);
hideObjectNames2 = new JMenultemn{"Hide Names");
hideObjectNames2.addActionListener(this);
subObjectsMenu.add({hideObjectNames2};
resetView?2 = hew JMenuitem("Reset View");
resetView2.addActionListener{this);

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

subObjectsMenu.add{resetView2);
}

public void destroy(} {
universe.cleanup();

}
J**

* This method sets up the main BranchGroup parameters. This is the Branch
* of the Java3D scene graph which will contain all of our run-time objects.

* We set parameters including lighting, background colour, boundingSphere,
* and capabilities of the main BranchGroup node. We also assign this

* BranchGroup an associated TransformGroup which will deal with the

* Transforms made upon the whole universe.

*

* @return The Main BranchGroup node. ie. A node to add all the visual 3D
* objects to.

*/

public BranchGroup createScene3D() {

// Define colours
Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
Cotor3f bgColor = new Color3f(0.25f, 0.25f, 0.25f);

// Create the Main BranchGroup
mainBranchGroup = new BranchGroup{);

/{ Create the bounding leaf node

// This specifies the size of the rendering space.

BoundingSphere bounds = new BoundingSphere{new Point3d{0.0, 0.0, 0.0},
boundingSphereSize);

Boundingleaf boundinglLeaf = new BoundingLeaf(bounds);

mainBranchGroup.addcChild{boundinglLeaf);

// Create the background

Background bg = new Background(bgColor);
bg.setApplicationBounds{bounds);
mainBranchGroup.addChild{bg);

// Create the ambient light
Ambientlight ambLight = new AmbientLight{white};

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

amblLight.setinfluencingBounds({bounds);
mainBranchGroup.addChild{amblLight);

// Create the directional light

Vector3f dir = new Vector3f(-1.0f, -1.0f, -1.0f);
DirectionalLight dirLight = new Directionallight{white, dir);
dirLight.setinfluencingBounds(bounds);
mainBranchGroup.addcChild{dirLight);

/{ Create the transform group node
mainTransformGroup = new TransformGroup();

// Set the appropriate capabilities for the TranformGroup node.

mainTransformGroup.setCapability{TransformGroup ALLOW TRANSFORM_READY);

mainTransformGroup.setCapability(TransformGroup ALLOW_TRANSFORM_WRITE);

mainTransformGroup.setCapability{Node ENABLE_PICK_REPORTING);
mainTransformGroup.setCapability(BranchGroup ALLOW _DETACHY);
mainTransformGroup.setCapability{Group ALLOW _CHILDREN_EXTEND);
mainTransformGroup.setCapability(Group ALLOW_CHILDREN_WRITE);

mainBranchGroup.setCapability(BranchGroup ALLOW _DETACH);
mainBranchGroup.setCapability{Group ALLOW_CHILDREN_EXTEND);
mainBranchGroup.setCapability(Group ALLOW _CHILDREN_WRITE),
// Add the main TransfaormGroup node to the main TransformGroup.
// This means the main transform group will be in charge of all the
// transformations of the universe as a whole.
mainBranchGroup.addChild{mainTransformGroup);

return mainBranchGroup;

1
/*t

* This method is called when a menu item is selected, and allows for the

* relevant task to he carried out,
L3

* @param e -
* provides the menu item which was selected.
*/

public void actionPerformed{ActionEvent e) {

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
385
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

/f Get the menu item, to be compared to the known items.
Object target = e.getSource();

if (target == forwardTrace) {
// Set global trace direction parameter to forwards.
traceDirection = Q;
/f Call the trace generating method.
createTrace();
// Reset the users perspective.
resetViewl);

}

if (target == backwardTrace) {
// Set globa' trace direction to backwards.
traceDirection = 1;
// Call trace creation method,
createTrace();
// Reset users perspective.
resetView();

}

if (target == resetViewl | | target == resetView2) {
// Allows the user to reset the view.
resetView();

}

if (target == exitTrace) {
// 1f in a trace view, can exit to the main view.
currentRoctNode.removetighlight();
currentRootNode.remaveObjectLinks({);
currentRootNode.replaceAllObjectsi);

resetView();

}

if (target == showObjectNames1 | | target == showObjectNames2) {

// Allows the showing of object names.
if (justSubObjects) {

// If in the trace view, anly create the names of the items in

// the trace.

for {\DebugObject i : Object3D.seenObjecttist) {
idoToObject3D.get{i).shawDetails(};

}

} else {

// Else, create all names for ALL the objects in the collection.

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

for (Object3D o : idoToObject3D.values|)} {
o.showDetails();
}
}
}
if (target == hideObjectNames1 | | target == hideObjectNames2) {
/{ Inverse of above, hiding the object names.
if (justSubObjects) {
for (IDebugObject i : Object3D.seenObjectlist) {
idoToObject3D.getl(i).hideDetails();
}
} else {
for {Object3D o : idoToObject3D.valuest)) {
o.hideDetails(});
}
}
}

if {target == showLines) {

/{ Create the directed lines of the graph.
for (Object3D o : idoToObject3D.values()) {
o.showlines();
}
// Set global all lines visible to true,
// \f user continues debugging, all new objects will have lines
/f created,
ofiLinesVisible = true,
}
if {target == hideLines) {
// Remove directed lines of the graph.
for {Object3D o : idoToObject3D.valuest)) {
o.hidelines();
}
alilinesVisible = false;
}
if (target == showObjectLines) {
/{ Create lines for this object only
currentRightClickedMode showLines();
}
if {target == hideObjectLines) {
/{ Hide lines for this object only

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

currentRightClickedNode.hideLines{);
}
if (target == redrawSpace) {
// Allows the space to be redrawn.
for (Object3D o : idoToObject3D.values(}) {
o.update():
if (o.linesVisible | | aliLinesVisible) {
o.showlLines();
}
}
resetView();
1
if {target == showQbjectDetails) {
/1 Allows the user to view extended details of an object.
if {objectDetails 1= null) {
// If object table already exists, remove it.
J.remove{objectDetails);
}
Vector<String> columnNames = new Vectar<String>(};
columnNames.add{"Data");
columnNames.add("Value");

/{ Create data vector, add all the information to it.
Vector<Vector<String>> data = new Vector<Vector<String>>(};
Vector<String> name = new Vector<String>{);
name.add{"Name:");
name.add{currentRightClickedNode.name);

data.add{name);

Vector<String> javaType = new Vector<String>();

javaType.add("Java Type:");

try {
javaType.add(currentRightClickedNode.ido.getValue()

.getlavaTypef).toString(});

} catch (DebugException e2) {
e2.printStackTrace();

1

data.add{javaType);

Vector<String> ref = new Vector<String>();
ref.add{"J)VM Reference");

493
454
455
456
497
498
495
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

try {
ref
.addi{currentRightClickedNode.ido.getValue()
.getValueString());
} catch {DebugException e2) {
e2.printStackTrace();

}
data.add(ref);

try {
for (IVariable var : currentRightClickedNode.ido.getvalue()
.getVariables(}) {
Vector<String> variable = new Vector<String>{};
variable.add(var.getName());
variable.add(var.getvalue().toString(});

data.add{variable);
1
} catch (DebugException el) {
el.printStackTrace(};
)

/{ Create table from collected data
ITable objectDetailsTable = new JTable(data, columnNames);
objectDetails = new IScrollPane(objectDetailsTable);
// Add tabie to frame.
f.add{objectDetails);
/{ pack the frame.
f.pack();
}
if (target == gridview} {
/{ Change general layout manager.
Object3D.JayoutMonagerType = Object3D.gridtype;
Object3D.JayoutMonager = new GridLayout(};
// Update objects to update positions from new layout manager.
for {Object3D o : idoTeObject3D.values()) {
o.update(};
}
// all abjects created, create lines.
for {Object3D o : idoToObject3D.values()) {
if {0.linesVisible) {

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

o.hideLines();
o.showlines();
}else if (aliLinesVisible) {
o.showlines{);
}
}
resetView();
// Disable relevant menu option.
gridview.setEnabled{false);
stackView.setEnabled(true);
divideResize.setEnabled(true):
clusteringBased.setEnabled(true);

if (target == stackView) {

// Change general layout manager.
Object3D.layoutMonagerType = Object3D stacktype;
Object3D.fayoutMonager = new StackedLayout();
// Update objects to update positions from new layout manager.
for {Qbject3D o : ideToObject3D.values()) {
o.update();
}
/7 All objects created, create lines.
for (Object3D o : idoToObject3D.values()) {
if {0.linesVisible) {
o.hidelLines(};
a.showlines();
} else if {alilinesVisible) {
o.showlines(};
}
1

resetView();

// Disable relevant menu option.
gridView.setEnabled(true);
stackView.setEnabled(false};
divideResize.setEnableditrue);
clusteringBased .setEnabled|true);

if (target == divideResize) {

// Change general layout manager.
Object3D.layoutMonogerType = Object3D.rankbased;
Object3D.foyoutManager = new RankBasedLayout();

575
576
577
578
579
580
581
582
583

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

// Update ohjects to update positions from new layout manager.

for (Object3D o : idoTaObject3D.values()) {
o.update();
}
// All objects created, create lines.
for (Object3D o : idaTaObject3D.values()) {
if {0.linesVisible) {
o.hidelines();
o.showlines();
} else if (aliLinesVisible) {
o.showlLines();
}
}
resetView();
// Disable relevant menu option.
gridView.setEnabled(true);
stackView.setEnabled(true);
divideResize.setEnabled{false);
clusteringBased.setEnabled(true);
}
if (target == clusteringBased) {
// Change general layout manager.
Object3D.JayautManagerType = Object3D.ciusterbosed;
Object3D.jayautManager = new ClusteringBasedLayout();

// Update objects to update positions from new layout manager.

for {Object3D o : idoToObject3D.values()) {
o.update();
}
/1 All objects created, create lines.
for (Object3D o : idoTaObject3D.values()) {
if {0.linesVisible) {
o.hideLines();
o.showlines();
} else if {alitinesVisible) {
o.showlines();
1
)i
resetView();
// Disable relevant menu option.
gridView.setEnabled(true);
stackView.setEnabled(true);

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

divideResize.setE nabled(true);
clusteringBased.setEnabled{false);
}

/.0

* This method aims to reset the View, in case the user wishes to return to

* the default view position.

*/

private void resetView() {
mainTransformGroup.setTransform{new Transform30D());
TransformGroup tg = universe.getViewingPlatform()

.getViewPlatformTransform(};

transform = new Transform3D();
transform.set(65.f, new Vector3f{0.0f, 0.0f, 600.0f));
tg.setTransform{transform};

}
/lt

* This method generates a trace based on the current node which has been
* selected, and a pre-set int representing the direction of the trace.
*/
public void createTrace() {
Object3D tempo = currentRightClickedNode;

Collection<Object3D> ¢ = idoToObject3D.values(};

// Clear the scene graph
tor (Object3D03d : ¢} {
mainTransformGroup.removeChild{o3d.getBranchGroup(});

}

/t

* Signify which object is the root. We need to know this for further
* right click events.

*/

currentRootNode = tempo;

// create tree layout for objects.
if (traceDirection == 0} {
// Create forward trace.

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

tempo.createCurrentTree();
tempo.displayObjectLinks();

} else if (traceDirection == 1} {
// Create backward trace
tempo.createCurrentBackLinkTree();
tempo.displayObjectBackLinks();

}

// We only want to highlight the root node.

tempo.highlightCurrentObject();

H

/**
* This method generates new Object3D instances, We expect it to be called

* from the UpdateHandler class when new objects have been generated.
*

* @param ido -

* the |DebugCbject we would like to make an Object3D wrapper
* for,
*/

public void createNew(iDebugObject ido) {

if {idoToObject3D.isEmpty() | | lidoToObject3D.containsKey{ido)) {
Object3D newObj = new Object3D{ido, this);
mainTransformGroup.addChild{newObj.getBranchGroup());
idoToObject3D.put{ido, newOhj);
}
}

/uz

* If the underlying system removes an object, we must remove it from our 3D
* graph.

*

* @param ido -

* The IDebugObject which has been removed.

*/

public void remove(IDebugOhbject ido} {

mainTransformGroup.removeChild{idoToObject3D.get(ido}).getBranchGroup(});
idoTeObject3D.removelido);
}

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

/aux

* Dealing with user interaction.

*

* Alt+Left-Click = Reset View.

* Left-Click on Object = Generate name for that object.

* In general view:

* right-click in "space' = Create main menu.

* right-click on object = Create Object menu.

* In Trace view:

* right-click in "space’ = Create trace menu.

* right-click on root = go back to general view.

* right-click on child node = create selected objects trace.
* @parame -

* The MouseEvent received from which we can decipher what action
* must be taken,

*/

public void mouseClicked{MouseEvent e) {

/7 Alt+ Left-Click resets the view.

if (e.isAltDown() && e.getButton(} == MouseEvent. BUTTONI) {
resetView();

}

// Left-Click generates name of object selected.

else If (e.getButton() == MouseEvent. BUTTON1) {

pickCanvas.setShapelocation|e);
// Pick object in that position.
PickResult result = pickCanvas.pickClosest(};
if (result == null) {
// Nothing Picked, do nothing.
}else {

// Get Object selected.
Primitive p = (Primitive) result.getNode(PickResult.PRIMITIVE);

if {p 1= null} {
// Get Object3D wrapper for selected object.
Object3D tempo = tgToObject3D.get{p.getParent());
// Show/hide name object for picked node.
if {Itempo.detailsVisible) {
tempo.showDetails();

739
740
741
742
743

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

}else {
tempo.hideDetails();
}
}
}

b
// \n general view, right-click generates main menu, or object menu
// dependent on whether object selected or not.
else if {!justSubObjects && e.getButton() == MouseEvent.BUTTON3) {

pickCanvas.setShapelocation(e};
PickResult result = pickCanvas.pickClosest();

if (result == null) {
// Nothing picked, show main menu,
mainMenu.show{e.getComponent{), e.getX(), e.get¥());

lelse {
// Create object menu, for this object, setting current right
// clicked node parameter.
objectMenu.show(e getComponent(}, e.getX(}, e.getY(});
Primitive p = (Primitive) result.getNode{PickResult. PRIMITIVE);
Object3D tempo = tgToObject3D.get(p.getParent());
currentRightClickedNode = tempo;

}

}

// In Trace view, right-click generates trace menu if ‘space’ clicked,

// if root node picked, we return to general view, else we create trace
// for selected object.

else if {justSubObjects && e.getButton(} == MouseEvent.BUTTON3) {

pickCanvas.setShapelocation(e);
PickResult result = pickCanvas.pickClosest{);

if {result == nult) {
// Nothing picked, show trace menu.
subObjectsMenu.show{e.getComponent(}, e.getX(}, e.get¥(});
} else {

Primitive p = (Primitive) result.getNode(PickResult. PRIMITIVE);

if (p !=null) {

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
203
804
805
806
807
808
809

}
810

Object3D tempo = tgToObject3D.get{p.getParent(}};

if {tempo == currentRootNode) {
// Go back to general view.
tempo.removeHighlight();
tempo.removeQbjectlinks();
tempo.replaceAllObjects();
resetViewl);
}else {
/*
* In this situation, the user probably want to pick the
* tree corresponding to the clicked on object. We must
* therefore reset the view, and perform the operation
* for the new object.
*/
currentRootNode.removeHighlight();
currentRootNode.removeOhjectLinks();
currentRootNode.replaceAliObjects();

currentRightClickedNode = tempo;

/7 Create trace takes into account the trace direction.
createTrace();

// Centre the root node.

resetViewl);

34
35

package view.interfaces;

import java.util.LinkedList;
import javax.vecmath.Vector3d;
import view.views.Object3D;

/ns

* This class serves as a controller for the positions of each Object3D in the
* system,

*

* @author Darjus Bradbury

*/

public interface LayoutManager3D {

/* *
* Maintained current ranking list, updated each time updateAllPositions is
* called.
*/
public static LinkedLlist<Object3D> currentRanking
= new LinkedList<Qbject3D>{);

/.‘
* ®param o3d -
. the Object3D we want the position of.

* @return A three-dimensional vector representing it's position.
*/
public Vector3d getPosition(Object3D 03d);

/*t
* This method tells the Layout Manager to reconsider its position values.
* We call this method when the underlying model changes.
*/
public void updateAllPositions();
}

LCu~dhurbhwnNeE

/‘ L

* The Gridlayout Class:

* This class aims to maintain a grid of 3D vector

* positions. New positions are created as new objects are passed into the
* model.

*

* @author Darius Bradbury.

* o
r— —_—

public class GHGEIYOUE

implements LayoutManager3D {

// Storage of Object3D to position vectors.

private HashMap<Qbject3D, Vector3d> o3dvectorMap;
// Current position in the grid.

private Vector3d curPos;

/1*

* Instantiate object, and set initial grid position.

*f

public GridLayout() {
o03dvectorMap = new HashMap<Object3D, Vector3dd>(};
curPos = new Vector3d(-50, 30, 0);

}
/tt

* This method creates a new 3D vector for the given Object3D object.
*

* @param o3d -

* Object wanting new grid position.

* @return - Vector corresponding to that Object3D's position.

*/

private Vector3d createNewPosition{Object3D 03d) {

// Make sure we haven't gone past the screens width.
if (curPos.getX() > {(View3D f.getBounds() height *
View3D.wideScreenRatio) / 10) {
/{ \f gone past screen width, drop down 2 line, and go back to
/{ initial X-axis position.
curPos.setX({-50);
curPos.set¥(curPos.getY() - 25);
}

/{ Generate a new vector for current position.

vector3d thisVec = new Vector3d{curPos);
/{ Mave vector along.
curPos.setX(curPos.getX() + 25);

/{ Place this vector into the map.
o3dVectorMap.put{o3d, thisVec):

// Return newly generated vector.

return thisVec;

}
/!t

* This is a public method designed to return the position of the given
* Object3D. If it's never been seen, create a new one, else pass on old
* position.

*

* @param 03d -

* Object querying for it's position vector.

* @return - 3D Vector representing its position.

*/

public Vector3dd getPosition(Object3D 03d) {

if {o3dVectorMap.isEmpty(} |} 'o3dVectorMap.containsKey(o3d}) {
// Never seen this Object3D, thus create new position.
return new Vector3d(createNewPosition{o3d));

}else {
// Seen this Object3D before, return it's position vector.
Vector3d pos = 03dVectorMap.get{o3d);
return new Vector3d({pos);

}

1

/tt

* This is a required method for all subclasses of the LayoutManager class.
* We require it te maintain the ranking of the objects when called, this

* allows for proper resizing of the objects when the underlying state

* changes.

*

*/

public void updateAllPositions() {

// First extract all the Object3D objects stifl in our system.

Collection<Object3D> totallistOfObjects = View3D.idoToObject3D.values();

LinkedList<Object3D> totalRankedListOfObjects = new LinkedUist<Object30>(
totallistOfObjects);

/7 Sort the collection based on rank
Collections.sort{totalRankedList OfObjects, new Comparator<Qbject3D>{) {
public int compare{Object3D arg0, Object3D argi) {
double diff = argD.ido.getPageRank() - argl.ido.getPageRank();
if (diff > 0} {
return-1;
} else i {diff <0} {
return 1;
jelse {
return 0;
}
1
ik
// Clear current ranking.
currentRanking.clear();
// Save this total object ranking.
currentRaonking.addall(totalRankedList OfObjects);

/tt
* The RankBasedLayout Class:
* This class performs the Divide and Resize process to distribute the objects,

* providing a layout manager to access the positions for each Object3D ohject.

L]

* @author Darius Bradbury
*/
public class RankBasedLayout implements LayoutManager3D {
// Storage of Object3D to position vectors.
private HashMap<Object3D, Vectorid> o3dVectorMap =
new HashMap<Object3D, Vector3dd>();
// Locally stored ranked list of objects, used to generate positions.
private LinkedList<Dbject3D> totalRankedListOfObjects;
// The radius of the 3D sphere we are to contain our objects within.
private double totalRadius;

’[t*
* We instantiate a new RankBasedLayout manager, update the
* current list of objects, and define the size of the 3D space we are to
* contain our objects within.
*/
publle RankBasedLayout() {
createRankedListOfObjects();
totalRadius = 100;
}

/-¢
* This method creates, or updates, our ranked list of objects. It is called
* each time the underlying state changes, and is used in generating the
* layout.

*f

private void createRankedListOfObjects() {

// First extract all the Object3D objects still in our system.
Collection<Object3D> totallistOf Objects = View3D.idaTaObject3D.values();

totalRankedListOfObjects = new LinkedList<Object3D>({totalListCfObjects);
// Sort the collection based on rank

Coilections.sort{totalRankedListOfObjects, new Comparator<Object3D>() {
public int compare{Object3D arg0, Object3D argl) {

double diff = arg0.ido.getPageRank(} - argl.ido.getPageRank(};
if (diff > 0) {
return-1;
} else if {diff < D) {
return 1;
} else {
return 0;
}
)
HH
// Clear current ranking
currentRanking.clear();
/{ Save this total object ranking.
currentRanking.addAll{totaiRankedListOfObjects);
}

/!*

* Performs a BFS to create all nodes in order of rank. This method is only
* called once, and creates positions for all the objects when called.

*

* @param o3d -

* The Object3D wishing to get it's position vector.

*

private Vector3d createNewPosition(Object3D 03d) {

// Create all pasitions.
createPositions{new Vector3d{0, 0, 0), totalRadius, 6,
totalRankedListOfObjects});
// Return position for given Object3D.
return o3dvectorMap.get{o3d);
}

f'.‘
* This method updates our ranked list of objects, and then creates the
* positions for all Object3D objects based on our new ranking.
*/
public void updateAllPositions() {
/{ Create Ranking.
createRankedListOfObjects();
// Create Positions.
createPositions{new Vector3d(0, 0, 0}, totalRadius, b,

86

113
114
115
116
117
118
119
120
121
122
123

}
/t

* (non-lavadoc)

.

* @see view.interfaces.LayautManager3D#getPosition(view.views.Object 3D)
*/

public Vector3d getPosition(Object30 03d) {

if {o3dVectorMap.isEmpty{)) {
// If map empty, create ranked list, and a!l positions.
createRankedListOfObjects();
Vector3d vad = createNewPosition(o3d);
return v3d;

} else if (!o3dVectorMap.containsKey(o3d)) {
// If map non-empty, but doesn't contain given Object3D, clear the
// mapping, recreate our ranked list, and recreate alll positigns.
o3dVectarMap.clear();
createRankedListOfObjects();
return createNewPosition{o3d);

} else {
// Position in map, just return it.
return o3dVectorMap.get{o3d);

1

}

/1!1!

* This method takes the root position for this rankBased Layout, the root
* object, the radius of the sphere within it must work, and the direction
* from which it was generated.

*

* 0 means it cam from -inf(x)

* 1 means it came from +inf(x)

* 2 means it came from -inf{y}

* 3 means it came from +inf{y)

* 4 means it came from -inf(z)

* 5 means it came from +inf(z)

* 6 means it's the root, and can go out in all directions.

*

* |t then creates positions for each of the positions in the given list.
L

124
125
126
127
128
125
130
131
132
133
134
135
136
137
138
135
140
141
142
143
144
145
146
147
148
145
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

* @param root -

* Our root position, the starting point for space generation.
* @param radius -

* Radius of the sphere of 3D Space allotted for our objects.
* @param cameFrom -

* Direction carne from relative to parent Object3D.

* @param rankedListOfObjects -

* The Object3Ds to distribute in this space.

*/

private void createPositions(Vector3d root, double radius, int cameFrom,

LinkedList<Object30> rankedListOfObjects) {

// Ascertain the number of objects we must distribute.
int numberOfOBjects = rankedListOfObjects. sizel);

// Place root node in position.
Object3D rootNode = rankedListOfObjects.remaveFirst();
o3dVectorMap.put{rootNode, root);

// Once placed, add to totalSeen set, so it is no longer considered by
// sub-groups.
totalSeen.add{rootNode};

// Create list of lists representing groups of objects.
// Do NOT destroy rankedListOfObjecis.
LinkedList<LinkedList<Object3D>> groups = getGroups{rankedListOfObjects);

// Create sub-lists - we want to keep similar objects tagether.
LinkedList<Object 30> lI0 = new LinkedList<Object3D>();
LinkedList<Object3D> Il1 = new LinkedList<Qbject3D>();
LinkedList<Object3D> li2 = new LinkedList<Qbject3D>(};
LinkedList<Object3D> 13 = new LinkedList<Object3D>();
LinkedList<Object3D> 114 = new LinkedList<Qbject3D>();
LinkedList<Object3D> [I5 = new LinkedList<Qbject3D>(});

// Start fram last direction used. This means we get a more even

// distribution of directions within our space.

// We could use a random number for even distribution, but we want our
// visualisations to be the same each time.

int i = directioni;

// Add groups of nodes at a time, as each group represents similar

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
1595
196
197
198
199
200
201
202
203
204
205

I11.add(rankedListOfObjects.removeFirst(}};
break;
case 2;
i++;
if (cameFrom == 2} {
break;
}
[12.add(rankedListOfObjects. removeFirst(}};
break;
case 3:
i++;
if (cameFrom == 3} {
break;
)
[13.add(rankedList GfObjects.removeFirst(});
break;
case 4:
i+
if (cameFrom == 4} {
break;
}
[14.add{rankedListCfObjects.removeFirst(});
break;
case 5:
i=0;
if (cameFrom == 5 {
break;
}
lI5.add{rankedListOfObjects.removeFirst(});
break;
}
}

ft

* Create positions far the sub-lists, each time halving their space,

* and repositioning their root. We do this in order to ensure that each
* sub-space doesn't "grow" towards it's parent node.

*/

if (cameFrom = 0 && NI0.isEmpty])) {
createPositions{new Vectordd{root.getX(} - radius, root.getY(},

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

root.getZ()), radius / 2, 1, 110);
}
if (cameFrom !=1 && NlL.isEmpty()} {
createPositions{new Vector3d(root.getX() + radius, root.getY{(),
root.get()), radius / 2, 0, 111);
}
if (cameFrom 1= 2 && !l12.isEmpty()) {
createPositions(new Vector3d{root.getX(), root.get¥() - radius,
root.getZ(})), radius / 2, 3, 112);
}
if (cameFrom = 3 && !I13.isEmpty(}} {
createPositions{new Vector3d{root.getX{), root.get¥() + radius,
root.getZ({}), radius / 2, 2, 13};
}
if (cameFrom = 4 && Vl4.isEmpty{}} {
createPositions{new Vector3d(root.getX{), root.getY(}, root.getZ()
- radius), radius / 2, 5, [14);
}
if {cameFrom != 5 && NIS.isEmpty(}} {
createPositions{new Vector3d{root.getX(}, root.get¥(), root.getZ()
+ radius), radius / 2, 4, lIS);

oo~ bhweor

/t‘

* The ClusteringBasedlLayout Class:

* This class performs a clustering algorithm

* to distribute the objects, providing a layout manager to access the positions
* for each Object3D object.

*

* @author Darius Bradbury

*/

public class ClusteringBasedLayout implements LayoutManager3D {

// Storage of Object3D to position vectors.
private HashMap<Object3D, Vector3d> o3dVectorMap =

new HashMap<Object3D, Vector3d>();
// Ourlocal ranked list of objects, used in creating positions.
publi¢ LinkedList<Object3D> totalRankedListOf Objects;
private HashSet<Object3D> totalSeen; // Maintains placed objects.
private double totalRadius; // Size of space we initially work with.
private int directioni = Q; // Direction we grow into.

/’lt
* We instantiate a new ClusteringBasedLayout manager, update the current
* list of objects, and define the size of the 3D space we are to contain
* pur abjects within.
*/
public ClusteringBasedLayout(} {
createRankedListQfObjects();
totalRadius = 100;
// Create seen object list.
totalSeen = new HashSet<Dbject3Dx{);

}

private void createRankedListOfObjects() {

// First extract all the Object3D objects still in our system.
Collection<Object3D> totalListOfObjects = View3D.idoToObject3D values();

totalRankedListOfObjects = new LinkedList<Object3D>{totalListOi0Objects);
// Sort the collection based on rank

Collections.sort{totalRankedListOfObjects, new Comparator<Object3D>{) {
public int compare{Object3D arg0, Object3D argl) {

double diff = arg0.ido.getPageRank() - argl.ido.getPageRank();

if (diff > 0) {
return -1;
} else if (diff < 0) {
return 1;
}else{
return 0;
}
}
)
// Clear current ranking
currentRanking .clear();
// Save this total object ranking.
currentRanking.addAll{totalRankedListOfObjects);
]

/tt
* Performs a BFS to create all nodes in order of RANK
*/
private Vector3d createNewPosition(Object3D 03d) {

createPositions(new Vector3d(0, 0, 0}, totalRadius, 6,
totalRankedListOfObjects);
return o3dVectorMap.get{o3d);
}

/t
* {non-lavadoc)

*

* @see view.interfaces.LayoutManager3DHupdateAllPositions{)
E]
/
public void updateAliPositions() {
// Reset parameters.
directioni=Q;
totalSeen.clear();
o3dVectorMap.clear();
// Recreate local ranked list.
createRankedListOfObjects();
// Create new positions.
createPositions(new Vector3d(Q, 0, 0}, totalRadius, &,
totalRankedListOfObjects);

83
84
85
86
87
88
89
90
91
92
93
94
95

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

totalRankedListOfObjects);
}

/*

* (non-Javadoc)

* @see view.interfaces.LayoutManager3DigetPosition(view.views.Object3D)
*/

public Vectordd getPosition(Object3D 03d) {

if (o3dVectorMap.iskmpty(}} {
// If map empty, create ranked list, and all positions.
createRankedListOfObjects{);
Vector3d v3d = createNewPosition{o3d);
return v3d;

} else if (lo3dVectorMap.containsKey{o3d)) {
// If map non-empty, but doesn't contain given Object3D, clear the
// mapping, recreate our ranked list, and recreate alll positions.
o3dVectorMap.clear();
createRankedListOfObjects();
return createNewPosition{o3d);

}else {
// Position in map, just return it,
return o3dvectorMap.get{o3d);

1

1

/**
* This method creates the vector positions for the given Object3D's.

* The came from location tells us the location of this sub-space, relative
*toits parent’s space:

-

* 0 means it came from -inf(x)

* 1 means it came from +inf(x)

* 2 means it came from -inf(y)

* 3 means it came from +inf{y}

* 4 means it came from -inf(z)

* 5 means it came from +inf(z)

* 6 meansit's the root, and can go out in all directions.

*

* @param root -

* Our root position, and centroid of space for given Object3D's.

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
158
160
161
162
163
164

* @param radius -

* Radius of the sphere of 3D Space allotted for our ohjects.

* @param cameFrom -

* Direction came from relative to parent Object3D.

* @param rankedListOfObjects -

* The Object3Ds to distribute in this space.

*

/

private void createPositions{Vector3d root, double radius, int cameFram,

LinkedList<Object3D> rankedListOfObjects) {

// Place root node in position.
o3dVectorMap.put{rankedListOfObjects.removefirst{), root);

// Create sub-[ists.

LinkedList<Object3D> ll0 = new LinkedList<Object3D>{);
LinkedList<Object3D> 11 = new LinkedList<Object3D>();
LinkedList<Object30> 112 = new LinkedList<Object3D>();
LinkedList<Object3D> 113 = new LinkedList<Object3D>();
LinkedList<Object3D> 114 = new LinkedList<Qbject3D>();

LinkedList<Object3D> IIS = new LinkedList<Object3D>();

/$
* Divide List up into 5 or & depending on cameFrom location We evenly
* distribute our Object3D's over the lists and ensure that each list
* preserves its rank order.
*
inti=Q;
while {IrankedListOfObjects.isEmpty(}) {
switch {i) {
case O:
i++;
if ([cameFrom == 0} {
break;
}
[10.add[rankedListOfObjects. removeFirst());
break;
case 1:
i++;
if (cameFrom == 1} {
break;

}

165 // ohjects. . 206 break;

166 while (lgroups.isEmpty()) { 207 }

167 switch (i) { 208 115, addAll{groups.removeFirst{)):

168 case 0: 209 break;

169 4+ 210 }

170 if (cameFrom == 0) { 211 }

171 break; 212 directioni = i;

172 } 213

173 [10.addAll{groups.removeFirst()); 214 7*

174 break; 215 * Here we distribute the objects based on how many we are dealing with.
175 case 1: 216 * If we have over 50, we "grow" our graph, such that, we move outside
176 4+ 217 * of our given bounds, however, we only grow "outwards", not towards
177 if (cameFrom == 1} { 218 * our parent node. Otherwise, we stick to the space we have, and
178 break; 219 * generate this space as in the Divide and Resize algorithm.

179 } 220 *f

180 [11.addAllgroups.removeFirst({)}; 221 if (numberOfOBjects > 50} {

181 break; 222 // Check positions are free, if not, put into guaranteed free

182 case 2 223 // direction

183 4 224

184 if (cameFrom == 2} { 225 // Set toPosition to represent moving in the negative X-axis

185 break; 226 // direction.

186 } 227 Vector3d toPosition = new Vector3d(root.getX() - radius, root
187 12.addAll{(groups.removeFirst(}); 228 .getY(}, root.getZ(});

188 break; 229 // Check no node already exists there.

189 case 3: 230 if (03dVectorMap.containsValue(toPosition)) {

190 4+ 231 // If node exists, pass these elements to a different direction
191 if (cameFrom == 3) { 232 // list.

192 break; 233 [11.addAlI{I10);

193 } 234 [10.clear();

194 113.addAll{groups.removeFirst{}}; 235 }

195 break; 236 // Set toPosition to represent moving in the positive X-axis

196 case 4: 237 // direction,

197 i++; 238 toPosition = new Vector3d{root.getX() + radius, root.getY(), root
198 if (cameFrom == 4) { 239 .getZ());

199 break; 240 if (03dVectorMap.containsValue(toPosition)) {

200 } 241 112.addAl{li1);

201 114.addAll{groups.removeFirst(}}; 242 l11.clear();

202 break; 243 }

203 case 5: 244 // Set toPosition to represent moving in the negative Y-axis

204 i=0; 245 // direction.

205 if (cameFrom == 5) { 246 toPosition = new Vector3d(root.getX(), root.getY() - radius, root

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

-getZ());
if (o3dVectorMap.containsValue(toPosition)) {
l13.addAll{li2);
12 clear();
}
// 5et tePosition to represent moving in the positive Y-axis
// direction.
toPosition = new Vector3id{root.getX(}, root.getY() + radius, root
-getZ());
if (o3dVectorMap.containsValue{toPosition)) {
114 addAll{lI3);
[13.cleart);
}
// Set toPosition to represent moving in the negative Z-axis
// directian.
toPosition = new Vectordd(root.getX(), root.getY(), root.getZ()
- radius);
if {o3dVectorMap.containsvalue{toPosition)) {
115.addAll{l14);
[14.clear();
}
// Set toPosition to represent moving in the positive Z-axis
// direction.
toPosition = new Vector3d{root.getX(}, root.getY(}, root.getZ(}
+ radius);
if (p3dVectorMap.containsValue(toPosition}) {
// If we find positive Z-axis contains a node, we put nodes into
// puaranteed free direction.
// Namely, away from our cameFrom location!
if (cameFrom == 0} {
111.addAll{lI5);
}
if {cameFrom == 1) {
1i0.addAdl{li5};
}
if (cameFrom == 2} {
113.addAll{l15):
}
if (cameFrom == 3) {
l12.addAlN5);
1

288
289
280
291
292
293
2594
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

]

if {cameFrom == 5} {
14, addAll{lI5);
}
}

/*
* We now create the positions by iteratively calling this method
* again. However, not that we don't change the radius size, and we
* move along by the whole radius size.
*/
if (cameFrom t= 0 && NI0.isEmpty()) {
toPosition = new Vector3d(root.getX() - radius, root.getY(),
root.getZ(});
createPositions({toPosition, radius, 1, 10);
}
if {cameFrom 1= 1 && VI1.isEmpty(}) {
toPosition = new Vector3d(root.getX() + radius, root.getY(),
root.getZ());
createPositions{toPosition, radius, 0, l11);
}
if {cameFrom 1= 2 && N2.isEmpty(}) {
toPosition = new Vector3d{root.getX(}, root.getY() - radius,
root.get2(});
createPositions{toPosition, radius, 3, 112);
}
if (cameFrom 1= 3 && [3.isEmpty(}) {
toPosition = new Vector3d(root.getX(}, root.gety(} + radius,
root.getZ()):
createPositions{toPosition, radius, 2, l13);
}
if (cameFrom |= 4 8& lI4.isEmpty(}) {
toPosition = new Vector3d(root.getX(), root.getY{), root.getZ()
- radius);
createPositions({toPosition, radius, 5, [14};
}
if (cameFrom != 5 && HIS.isEmpty(}} {
toPosition = new Vector3d(root.getX{}, root.getY{}, root.getZ()
+ radius);
createPasitions{toPosition, radius, 4, li5);

}

329 /* 370 }

330 * |f we have under 50 objects to place in our given space then we 371

331 * perform the normal Divide and Resize algorithm. 372

332 */ 373 * We calculate groups based on cantexts. We remove all nodes aiready placed
333 else { 374 * in graph from context, and thus group or cluster these elements based on
334 // Direction to mave root for current sub-object list. 375 * |links without the parent node, and hence, all links reachable from it,
335 Vectar3d toPaosition; 376 * but not from within the group members directly. In other words, the
336 377 * context of a node is all the nodes it can reach, without going through
337 // Note that we half the radius given to our sub objects list in 378 * the abjects already placed in the graph.

338 // this instance. 379 *

339 1 (cameFrom |= 0 && N0.isEmpty()) { 380 * |n this way, we split the graph into it's sub-graphs.

340 toPosition = new Vectordd(root.getX(} - radius, root.getY{), 381 *

341 root.getZ(})); 382 * @param rankedListOfObjects -

342 createPositions({toPosition, radius / 2, 1, 110); 383 * objects in this part of the 3D graph.

343) 384 * @return List of related groups.

344 if (cameFrom = 1 && W LisEmpty()) { 385 */

345 toPaosition = new Vector3d(root.getX{) + radius, root.getY(), 386 private LinkedList<LinkedList<Object30>> getGroups{

346 root.getZ()); 387 LinkedList<Object3D> inputList) {

347 createPositions(toPosition, radius / 2, 0, I11); 388

348] 389 // Set our seen set, to all the objects PLACED in the map.

349 if (cameFrom 1= 2 && W2.isErmpty()) { 390 HashSet<Object3D> seen = new HashSet<Object3D>{totalSeen);

350 toPosition = new Vector3dd(root.getX{), root.getY(} - radius, 391

351 root.getZ()); 392 // Create ranked list of objects based on input set (which is already in
352 createPositions{toPosition, radius / 2, 3, 112); 393 // order.)

353 } 394 LinkedList<Object3D> rankedListOfObjects = new LinkedList<Object3D>{
354 if (cameFrom i= 3 && I3.isEmpty{}) { 395 inputList);

355 toPosition = new Vector3d(root.getX(), root.getY() + radius, 396 // Create list of lists.

356 root.getZ(})}; 397 LinkedList<Linkedlist<Object3D>> groups = new

357 createPositions(toPosition, radius / 2, 2, 113); 398 LinkedList<LinkedList<Object3D>>{};

358 } 399

359 if (cameFrom = 4 &8 1I4.isEmptyl)) { 400 for (Object3D o3d : rankedListOfObjects) {

360 toPosition = new Vector3diroot.getX(}, root.get¥(), root.getZ(} 401 // We only want to create new groups for UNSEEN obiects.

361 - radius); 402 if (lseen.contains{o3d)} {

362 createPositions{toPosition, radius / 2, 5, 114); 403 LinkedList<Object3D> group = new LinkedList<Object3D>{);

363) 404 // Add to seen list, as we don't want to pass through this node
364 if {cameFrom != 5 && I5.isEmpty()) { 405 // again.

365 toPosition = new Vector3d{root.getX(), root.getY{}, root.getZ(} 406 seen.add(o3d);

3166 + radius); 407 // Add to current group.

367 createPositions(toPosition, radius / 2, 4, 1I5); 408 group.add{o3d);

368 } 409

369 } 410 // We then find related items to this 03d, and place into this

411
412
413
414
415
416
417
418
419
420
421
422
423
424

// list.
LinkedList<Object3D> contextList = new LinkedList<Object30>();

try {
// Look at forward links.
for {Entry<IDebugObject, IVariable> variableLink : 03d.ido
.objectLinks(}.entrySet()) {
Object3D forwardLinkObject = View30.idoToObject3D
get{variableLink.getKey(}};
if (seen.contains(forwardLinkObject}) {
// Unseen node, so add to current context,
// overall group, and seen list.
contextlist.add(forwardLinkQbject);
seen.add{forwardLinkQbject);
group.add(forwardLinkObject);
}
}
// Look at backward links.
for (Entry<iDebugObject, IVaniable> variablelink : o3d.ido
.backLinks().entrySet(}} {
Object3D backwardLinkObject = View3D.ideToObject3D
.get(variableLink.getKey(});
if (1seen. contains{backwardLinkObject)} {
// Unseen node, so add to current context,
// overall group, and seen list.
contextList.add{backwardLinkQbject);
seen.add(backwardLinkObject);
group.add(backwardLinkObject);
}

}
} catch (NullLinkException €] {

e.printStackTrace();
}

// Now iterate through this objects context nodes.
while (!contextLlist.isEmpty()) {
Object3D newContextObject = contextList.remove();
try {
// Yook at forward links.
for (Entry<IDebugObject, IVariable> variableLink :
newContextObject.ido.objectLinks().entrySet(}) {

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
a7
472
473
474
475
476
477
478
a79
480
481
482
483
484
485
486
487
488
489
490
491
492

Object3D forwardLinkQbject = View3D.idoToObject3D
.get{variableLink.getKey()};
if (!seen.contains{forwardLinkObject)) {
// Add to current context.
contextlist.add(forwardLinkObject);
// Add to seen nodes.
seen.add(forwardLinkObject);
// Add to current group.
group.add{forwardLinkQbject);
}
}
// look at backward links.
for {Entry<IDebugObject, [Variable> variablelink :
newContextObject.ido.backLinks() entrySet()) {
Cbject3D backwardLinkObject = View3D.idoToObject3D
.get{variableLink getKey());
if (Iseen.contains(backwardLinkObject}) {
// Add to current context.
contextlist.add{backwardLinkQbject);
// Add to seen nodes.
seen.add{backwardLinkObject);
// Add to current group.
group.add{backwardLinkObject);
}
}
} catch (NullLinkException e) {
e.printStackTrace{);
}
1

// Sort our new group list based on importance.

Collections.sort{group, new Comparator<Object3D>{) {
public int compare(Object3D arg0, Object3D argl) {
double diff = arg0.ido.getPageRank()
- argl.ido.getPageRank();

if (diff > 0) {

return -1;
} else if {diff < 0) {

return 1;
}else {

493 return 0;
494 }

495 }

496 W

497 // Add this group to our overall set of groups.
498 groups.add(group);
499 }

500 }

501 return groups;

502 }

503

504 }

505

/o 42 ¥/

* The Treelayout Class: 43 public Vector3d createNewPosition(Object30 o3d) throws NullLinkException {
* This class controls the pesitioning of the all the 44
* objects in a forward trace, given a roct node. It performs a Breadth-First 45 // Create fresh list of seen nodes.

* sparch ta do this. 46 seenlist = new LinkedList<IDebugObject>(};

. 47 // Create fresh map of sub-tree sizes;

* @author Darius Bradbury 48 sizeMap = new HashMap<IDebugObject, Integer>(};

*/ 49 // Calculate the size of this IDebugOhbjects sub-tree, and all the

Lo~V hwWwMnRE

* due to the IDebugObject's link extraction method.

public class TreelLayoutC implements LayoutManager3D { 50 // |DebugObjects within that sub-tree.
51 getSize{o3d.ido);
// \DebugObject to Position Vector mapping. 52 // Create root position, place given node in roct position.
private HashMap<IDebugObject, Vector3d> idoVectorMap; 53 Vector3d thisVec = new Vector3d(rootPos);
// Pasition of the root. 54 idoVectorMap.put{o3d.ido, thisVec);
public Vector3d rootPos; 5%
// Current position in the tree. 56 // Create all the nodes, and leaves.
public Vector3d curPos; 57
// List of seen objects, to cope with loops. 58 // Forward links container mapping.
Linkedlist<tDebugObject> seenList; 59 Map<IDebugObject, Variable> linklist;
// Map of 1DebugObjects to their sub-tree size. 60 // Put objects AND primitives.
private HashMap<IDebugObject, Integer> sizeMap; 61 linklist = o3d.ido.objectLinks{};
62
J** 63 // List of link entries.
* Creates a new Tree Layout Manager, resetting the roct and current 64 LinkedList<Entry<IDebugObject, IVariable>> children =
* position vectors. 65 new LinkedList<Entry<lDebugObject, IVariable>>(};
*/ 66 // Seen list for this pass.
public TreeLlayoutCl) { 67 LinkedList<IDebugObject> seen = new LinkedList<|DebugObject>{);
idoVectorMap = new HashMap<IDebugObject, Vector3d>(); 68 // Add root node to seen list.
rootPos = new Vector3d(Q, 30, 0}; 69 seen.add({o3d.ido);
curPos = new Vector3dd(0, 30, 0); 70
1 71 // lterate through each IDebugCbject our root points to.
72 for (Entry<IDebugObject, IVariable> ido : linklist.entrySet{)) {
Jr* 73 if (!seen,contains(ido.getKey())) {
* This method creates a new position for the given Object3D object, in 74 // 1f not in seen list, add to seen list, add to children.
* doing so, it creates positions for all Object3D's in its forward trace 75 children.add(ido);
* subtree, and sets the given node as the root. 76 seen.add(ido.getKey(});
* 77 }
* @param o3d - 78 }
* Object3D not in map, thus needing its position. 79
* @return 3D Vector representing Object3D's position. 80 // Create List of lists representing levels of the tree.
* @throws NulllinkException 81 LinkedList<LinkedList<IDebugObject>> levelsOfChildren = new

82 LinkedList<LinkedList<|DebugObject>>();

83 // Create temporary list containing working level. 124

84 LinkedList<IDebugObject> thisLevel = new LinkedList<IDebugObject>(); 125 /{ Now create positions from this list of levels.
85 // indicator for level change. 126 /{ Iterating through each level, until leaves have been reached.
86 int levelindicator = children.size(); 127 // In other words, we place nodes, on a level-at-a-time basis.
87 128 while {llevelsOfChildren.isEmpty()} {
88 /* 129
89 * Here we create a list of lists containing the objects of each level. 130 // New level, so we drop down a level in our 3D space.
Q0 * In other words, we are creating a list of the levels by performing a 131 curPos.setY(curPos.getY() - 25);
91 * BFS, once all nodes in a level have been consumed, we generate a new 132
92 * list. 133 // Take current level from list of levels.
93 xf 134 LinkedList<IDebugObject> currentLevel = levelsOfChildren,remove();
94 while (!children.isEmpty()) { 135
a5 if {levellndicator == 0} { 136 /* Calculate space required */
96 // We know we have come to the end of this level, must create a 137 int currentLevelSize = 0;
97 // new one, 138 // Level size determined by the sum of the size of each child.
98 levellndicator = children.size(}; 139 for (IDebugObject i : currentLevel) {
Q9 levelsOfChildren,add(thisLevel); 140 currentlevelSize += getSizeli);
100 // Create new working list for new level, 141 }
101 thisLeve! = new LinkedList<IDebugObject>{); 142
102 } 143 // Move horizontal position all the way to the left.
103 144 curPos.setX(rootPos.getX() - ({currentLevelSize * 25) / 2));
104 // lock at current child from list, ie. BFS. 145
105 IDebugObject curcChild = children.removeFirst{).getKey(); 146 // lterate through children, and place them.
106 147 while {lcurrentlevel.isEmpty{}) {
107 // Iterate through child's forward links. 148 // Get child.
108 for (Entry<IDebugObject, Wariable> variablelink : curChild 149 IDebugObject currentObj = currentLevel.removeFirst();
109 .objectLinks{}.entrySet()} { 150 // get child’s size.
110 if (Iseen.contains{variableLink.getKey(}}) { 151 int currentObjSize = getSize(currentObj);
111 children.add(variableLink); 152 // Move position in refation to the child's size, such that
112 seen.add{variableLink. getKey()}; 153 // allits children will fit underneath it.
113 } 154 curPos.setX{{currentObjSize * 25} / 2 + curPos.getX(});
114 } 155 // Place object.
115 156 idoVectorMap.put{currentObj, new Vector3d{curPos));
116 // Add current child node to leve! list. 157 // As object placed in the middle of this space, move over to
117 thisLevel.add{curChild); 158 // the edge, such that a new object can be placed.
118 // Decrement level counter, so we know when level has finished. 159 curPos.setX{(currentObjSize * 25) / 2 + curPos.getX());
119 levellndicator—-; 160 }
120 } 161 }
121 162 // Return root position.
122 // Add final level to overall levels. 163 return idoVectorMap.get{o3d.ido});

123 levelsOfChildren.add(thisLevel); 164)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
150
191
192
193
194
155
156
197
198
199
200
201
202
203
204
205

/t

* {non-Javadoc)

* @see view.interfaces.LayoutManager3D#getPosition(view.views.Chject3D)
*/

public Vector3d getPosition{Object3D 03d) {

if (idoVectorMap.isEmpty{) | | lidoVectorMap.containsKey{o3d.ido}) {
// Need to create the tree with this Object3D as the root.
try {
// Thus create tree with 03d as root.
return new Vector3d{createNewPosition(03d));
} catch (NullLinkException e} {
throw new RuntimeException(e);
}
Yelse {
// Object3D already in tree, thus, just return its position.
Vector3d pos = idovectorMap .get{o3d.ido);
return new Vector3d{pos);
}
}

/l
* This method returns the number of leaves in the object finks tree. The
* Size Map should be cleared at each iteration of the program, this is so
* that new sizes can be updated when they change.
*/
public int getSize{|DebugObject ido) throws NullLinkException {
// |f size already calculated, thus in size mapping, return entry.
if (IsizeMap.isEmpty()] {
if (sizeMap.containsKey(ido)) {
return sizeMap.get{ido};
} else {
throw new RuntimeException(
"SYSTEM CALLED FOR GETSIZE ON AN UNKNOWN ELEMENT.");
}
}
// If size mapping yet to be created, and given IDebugObject has some
// forward links, perform single pass through objects, calculating
// sizes as we go.

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

else if {ido.objectLinks().size() > 0} {

// Create list of IDebugObject and their ancestars in the tree.
LinkedList<idoAncestorsListPair> list =
new LinkedList<idoAncestorsListPair>();
// Add root node to the seenlist.
seenList.add(ido);

// iterate through the forward links of this IDebugObject, creating
// \DebugObject, ancestor pairings as we go.
for (Entry<IDebugObject, IVariable> variableLink - ido
.objectLinkst).entrySet(}) {
if (IseenList.contains(variableLink.getKey())} {

idoAncestorsListPair idoAncestorsPair = new idoAncestorsListPair(

variableLink getKey(}};
// root is parent, so add to ancestor list.
idoAncestorsPair.addAncestor{ido);
// Add to overall BFS search list.
list.add(idoAncestorsPair);
// Add to list of seen nodes, maintaining BFS search pattern.
seenlList.add(variableLink.getKey{));
}
}

// Caleulate how many elements are below root.

// Iterate through list of children.
while (Uist.isEmpty()} {
// Create clone of our list, to allow it to be destroyed.
LinkedList<idoAncestorsListPair> templist =
{LinkedList<idoAncestorsListPair>} list.clone();
// clear current list.
list.clear();
// Iterate through each child node in the original list.
for {idoAncestorsListPair i : templist) {
int childrenCount = 0;
// Iterate through that child's forward links.
far {IDebugObject newi : i.getlDO{).objectLinks().keySet()} {
// List added with new objects
// While loop continues until all objects
// iterated through.

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

if (Iseenlist.contains{newi}} {
// increment number of children counter.
childrenCount++;
idoAncestorsListPair idoAncestorsPair = new idoAncestorsListPair{

newi);

// Add all current ancestors.
idoAncestorsPair.addAncestors(i.getAncestors());
/{ Add current parent.
idoAncestorsPair.addAncestor(i.getiDO()};
{// Add this node to the "to-be iterated" list.
hst.add(idoAncestorsPair);
/{ Add to list of seen nodes. (Dealing with
/{ backlinks.}
seenlist,add(newi);

}

}

/*
*If node has no children, we know it's a leaf! Crucially,
* we can now look at all its ancestors, and increase their
* size. As we do this for all leaves, we know each node in
* the tree will have a size depending on the number of LEAF
* nodes in its sub-tree,
*/
if {childrenCount == 0} {
// New node, so put straight into map.
sizeMap.put(i.getIDOI), 1);
// We then increment the size of EVERY ancestor.
for (IDebugObject ancestor : i.getAncestors()) {
if (sizeMap.containsKey(ancestor)} {
int curSize = sizeMap.get{ancestor);
sizeMap.put{ancestor, curdize + 1);
Jelse{
sizeMap.put{ancestor, 1);
}
}
}
}
}
// Return size of original IDebugCbject.
return sizeMap.get{ido);

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

}else {
// i original IDebugChject is a feaf, size is simply 1.
sizeMap.put{ido, 1);
return 1;
1
}

/*
* {(non-Javadac)
* @see view.interfaces LayoutManager3D#updateAllPositions()
*/
public void updateAllPositions() {
/{ Tree recreated at each step, this is not a general view layout
// manager, so we don't need to imp'ement this method.
// This is a special case for Layout Managers.

)

VOO~

/ta
* The idoAncestorListPair class:
* This class allows for the size of a tree to be

* calculated efficiently. It provides a way of storing each node, alongside afl

* of its ancestors.

*

* @author Darius Bradbury.
*
*/
public class idoAncestorsListPair {
// The IDebugObject node.
IDebugObject ido;
// The |DebugObject's ancestors in the tree.
LinkedList<IDebugQObject> ancestors;

/i-

* Instantiates the object, setting the node to the given IDebugObject.

-

* @param ido -
* The node we want to maintain a list of ancestors for.
*f
public idoAncestorsListPair{IDebugObject ido) {
this.ido =ido;
ancestors = new LinkedList<1DebugObject>();

}
/ht

* Add an ancestor to the list.

* @param o3d -

* One of the nodes ancestors.

*f

public void addAncestor{|DebugObject 03d) {
ancestors.add{o3d);

}
/r*

* Add a list of ancestors to the list.

*

* @param ancestorlList -
* list of ancestors to be added.

}

*/
public void addAncestors{LinkedList<IDebugObject> ancestorlList) {
ancestors,addAll{ancestorList);

}

/-H*
* Enable IDebugObject to be retrieved.

*

* @return the IDebugObject node,
*
/
public IDebugObject getIDO() {
return ido;

)

/=
* Returns a list of all the ancestors of this IDebugObject.

*

* @return List of ancestors.

Y/

public LinkedList<IDebugChject> getAncestors() {
return ancestors;

}

WL~k WwMNnRE

36
37
38
39
40
41

/! -
* The activator class contrals the plug-in life cycle
*/

public class Activator extends AbstractUIPlugin {

/{ The plug-in 1D
public static final String PLUGIN_ID = "View";

/{ The shared instance
private static Activator plugin;

/li *

* The constructor

*/

public Activator() {
plugin = this;

}

/t
* (non-Javadocg)
* @see

org.eclipse.ui.plugin. AbstractUIPluginfstart(org.osgi.framework.BundleContext)

*/

public void start{BundleContext context) throws Exception {

super.start{context);

}
/!

* (ron-Javadocg)
* @see

org.eclipse.ui.piugin.AbstractUIPlugin#stop(org.osgi.framework BundleContext)

*f

public void stop(BundleContext context) throws Exception {

plugin = null;
super.stop({context);

1
/!‘

* Returns the shared instance
-

* @return the shared instance

}

*
public static Activator getDefault() {
return plugin;

}
Ak

* Returns an image descriptor for the image file at the given

* plug-in relative path

*

* @param path the path

* @return the image descriptor

*/

public static ImageDescriptor getimageDescriptor(String path) {
return imageDescriptorFromPlugin(PLUGIN_ID, path):

}

