
Visualising Memory Graphs:
 
Interactive Debugging using Java3D
 

Darius Bradbury 

May 19, 2008 

Abstract 

This report. df'A"iCribes a new way of visualising Java run-time objects, 
and t.heir a,'>sociated memory graphs. Using the Eclipse debugging frame
work, alongside the Java3D platform, it aims to describe methods for 
extracting useful debugging information from a runlling program and dis
playing this information in a t.hree-dimensional space. The focus of this 
report deals with how using a three-dimensional space can enhance t.he 
debugging experience, introduce interesting visualisations of programs, 
and create a basis for future debugging in this way. The result is a llser
friendly, efficient system whicb can visualise large programs in a rela
tively small amount of screen real-est.ate. This report shows that three
dimensional visualisation cau be a useful tool for debugging, program 
analysis, and a viable alternative to traditional solutions, 

1 



Contents 

1 Introduction	 3
 
1.1 Formal Definition . . . . . . .	 4
 

1.1.1	 The Memory Graph . 4
 
1.1.2	 Beyond The Memory Graph. 5
 

1.2 Project Road Map .	 5
 

2 Background - 3D Modelling in Java	 6
 

3 Requirements	 9
 

4 Design	 10
 
4.1 Preliminaries	 10
 

4.1.1	 Creating the Eclipse Ping-in. . . .. 10
 
4.1.2	 The Underlying Framework - what we aim to build our
 

visualisations from . . . .. 11
 
4.1.3	 Constructing the Three-Dimensional Environment 12
 

4.2 The Update Handler . . . . . . . . . . . . . . . . . . . . 13
 
4.3 The Object3D Class . . . . . . . . . .	 15
 
4.4 Maintaining the Java3D scenc graph - The View3D Class 17
 
4.5 Managing Different Layouts	 18
 

4.5.1	 Creating a Layout Manager 18
 
4.5.2	 Simple 3D Layont Designs. 19
 
4.5.3 Ranking The Objects ... 20
 
4..5.4 Divide and Resize Algorithm 20
 
4.5.5	 A Different Approach to Determining Object Size 23
 
4.5.6	 Clustering Method . . . . . . . . . 23
 
4.5.7	 Generating Forward and Backward Traces 26
 

4.fi User Interaction	 28
 
4.7 Overall Design View	 29
 

5 Testing	 32
 
5.1 Simple Program - BFS and DFS using the Visitor Pattern 32
 
5.2 Complex Program - Vector Space Document Retrieval Model 34
 
.5.3 Test Rig 38
 

6 Conclusions	 39
 
6.1 Further Work . . . . . . . . . . . . . . . . . . . . . . 40
 

6.1.1	 Calculating Differences Between Program States 40
 
6.1.2	 On-the-f1y Updating/Editing of Variables 40
 
6.1.3	 Animating Program Runs . . . . . 41
 

"( Acknowledgements	 41
 

8 Appendix	 42
 

2 



1 Introduction 

Debugging solutions currently available offer a wide range of information to the 
end-user. ThiR information is typically displayed in a textual or 2-dimenslonal 
graphical manner. At the low level, we have avaitable debuggers which provide 
insight into the state of a running program by allowing insertion of breakpoints, 
and displaying a summary of the program's stack at any point [14]. However, 
such a display of information makes it difficult for a TIser to follow pointers, 
and references within a live program. This is true of any text-based system, 
whatever the graphical front-end [8]. Debuggers do go further than this however, 
with some allowing graphical output to display graph structures of the running 
program [9]. It is these kinds of systems which we build upon. 

Visualisation solutions on the other hand seem to be available in an off-line 
format. A program is processed by means of its source code, and various layouts 
produced. These kinds of systems map source code to visual representations of 
that source code [12]. These systems provide some help in debugging systems, 
but are much more frequently used to aid the understanding and planning of 
larger programs. When representing our run-time objects in 3D space: it would 
be useful to consider how these same principles can be applied. We aim to pro
vide much the same information, but with respect to the run-time environment 
of a program, rather than its static counterpart. 

Current visualisation solutions seem to be moving toward three-dimensional 
int.erfaces, examples of this can be seen in the work of Knight and Muuro [11], 
Callaghan and HirschmUller [6], and Maletic, Leigh, and Marcus [12] to name 
but a few. The reason for this is that it turns a two-dimensional piece of screen 
estate: into a three-dimensional world. This allows us to display many more 
items in a smaller amount of space. It also provides an immersive interface for 
exploring a program, allowing certain paths to be followed: and alleviates the 
problem of traversing huge two-dimensional graphs. 

This project aims to combine aspects from both these fields of work, in order 
to visualise Java run-time objects in a three-dimensional manner. This will 
allow for visnalisation of any program, but from a debugging perspective. This 
so-called three-dimensional debugger will provide users with a way of stepping 
through their code, visualising it on-the-fly, and providing them with a Hew 
way at looking at the program they have created. This can be either to debug 
it l enhance it, or simply aid understanding. This project will therefore deal 
with displaying this disconnected, dynamically changing set of objects, and the 
multiple links between them. 

The idea underpinning these visualisations is that of a "Memory Graph" [17]. 
A memory graph, as the name suggests, represents the contents: and current 
state, of memory in a given system. It is this information that we aim to extract 
and display to the user. ~1emory graphs allow for an instant understanding of 
a program state, looking at links between objects, the number of objects, the 
disconnected or connected nature of the system: and a visual representation of 
how the program 'grows'. 

The system we aim to produce will analyse Java programs in particular. As 
sueh, we will use the widespread IDE (Integrat.ed Development. Environment) 
'Eclipse: as our starting platform. In particular: we will make use of JDT, 
the Java Development Tools and one of its main components, the built-in .Java 
debugger [I]. 

3 



This project assumes a framework sitting between the Java dehugger and 
itself, allowing for useful extraction of the current memory state, object and 
primitive information, and provide prompting of state changes. We then aim 
to build an Eclipse plug-in which will allow for our three-dimensional space 
interface to sit side-by-side with the JDT debugging interface. The aim is to 
give the user additional debugging opportunity, as well as program visualisation, 
side-by-side with a comprehensible set of tools already available in the JDT 
framework, 

1.1 Formal Definition 

In order to continue from here we must formally define what is meant by a 
'"memory graph" 1 and what relations can be drawn from such a graph. This 
will provide impetus for its use, and how to go about visualising it in a three
dimensional space. 

Some of the first work in useful graphical debugging was achieved by Zeller 
and Lutkehaus in developing their DDD (Data Display Debugger) front-end for 
UNIX debuggers [16]. The concept was to display data structures in the form of 
graphs, these graphs would be representations of the fun-time components of the 
running program. Formally, each value in memory is considered a vertex (node), 
and each edge is considered to be a pointer between two such values, or in this 
case, vertices. In the DDD system, clicking on a node resulted in its expansion, 
displaying the values it references. This idea has been developed greatly, notably 
by Zimmermann and Zeller in their paper on 'Visualising Memory Graphs' [171. 

They describe a memory graph as, "a basis for accessing and visualizing 
memory contents." This differs from the DDD solution as they propose an 
automated method for creating the whole graph. The formal definition of the 
structure is defined in their paper [17]; however, I will outline it below: 

1.1.1 The Memory Graph 

Consider a graph defined by G, where G = (V,E,root). Namely, the graph 
eonfiists of a set of vertices, or nodes, a set of edges, and a dedi~ated root node. 

Vertices V: Each vertex in the set V consists of a triple. This triple is made 
up of the value, type, and address of the object in memory. In Java, this can 
be both primitives and object instances. 

Edges E: Each edge also consists of a triple, this time made up from two 
vertices, notably, the related vertices, and an operation. The operation relates 
to how we construct a name for the edge, given the parent and descendant 
vertices. Edges in this graph are directed, one value is referencing another, and 
hence, one node, is pointing to another. 

Root node: Iu Zimmermann and Zeller's interpretation of a memory graph, 
the root node is a dedicated vertex which references all base variables. In other 
words, every variable in the scope of the memory graph is accessible from root. 
'''hat this entails is that the description of a memory graph used here, creates a 
directed and connected graph. This project aims to generalise this requirement, 
allowing for a disconnected graph whereby a specified root node is not required. 

4 



1.1.2 Beyond The Memory Graph 

The above describes the definition of a memory graph; however, as explained 
we may not always want to decide on a root node. Instead, we look to create 
a more general graph, but allow users to select nodes for which they would 
like to make the root. This then allows us to continue looking at the work 
of Zimmermann and Zeller, and continue to use their memory graph concept. 
Their paper then continues on the automatic construdion of memory graphs 
which simply consists of creating a connected graph linking the foot to all the 
base variables, considering the path of references which must be undertaken to 
get there [17]. 

Building on this memory graph structure is the notion of forward and back
ward traces. \\That we have already explained is the notion of a disconnected 
memory graph. No root node is specified, but we can ascertain the links between 
objects and primitives. Program slicing deals with how a certain bit of' code is 
relevant to a particular program [2]. In particular, dynamic slicing, whereby 
we only consider a specific execution of a program, or in our case, the current 
run-time state of the program [15]. 

What we propose is a method similar to slicing, which I will call tracing to 
differentiate it from program slicing. We use the disconnected memory graph 
we have available to us, and then continue to construct a connected memory 
graph by picking a particular root. In other words, we are looking to centre 
focus 011 one object, and see what role it plays in the program. TIlis provides 
the user with the ability to see aU the relationships within a large program, but 
then narrow focus down to a particular object. 

The notion of a trace is very much similar to that of a memory graph, in fact, 
Zimmermann and Zeller consider tracing to provide sub-graphs of the overall 
memory graph [7]. Forward tracing looks at. all the references made from our 
user-selected 'root' node. A backward trace does the opposite, it traces aU the 
objects that reference it, and then the objects which reference those objects, 
and so forth. In other words we can look at the path of referencing from a 
particnlar object, and the sequence of referencing to obtain a particular object, 
at any point in a program run. 

Forward tracing can be seen as a way to look at how a particular object 
influences other objects and variables, in particular, showing its effect OIl the 
system as a whole. Backward tracing provides the insight into finding out which 
other objects inflnenced the resulting value of this object or primitive. Notably 
we now have an underlying connected graph structnre representing the effect 
of, or the objects/primitives which effect, a certain object. 

This tracing system allows us to free np the notion of a memory graph, 
removing the necessity for the graph to be connected, and allowing us to visualise 
the run-time stat.e of a whole program. Then, if the user wishes to select focus 
on a single object, we provide tracing options to do just that. 

1.2 Project Road Map 

This project aims to access a framework sitting on top of the Eclipse JDT 
debugger, providing access to all the underlying objects and primitives in the 
system. This framework will provide information as to the values of an object, 
as well as the links to other objects. It is our job therefore to display this 

5 



2 

information as coherently and intuitively as possible to the end user. We must 
be sure that the system created is capable of dynamically updating any graph 
in view, when the underlying program changes. In other words, we ~ubscribe 

to the underlying debug model to notify us when the user steps to a different 
point in the program, and update our model accordingly. 

We will make use of the theory of memory graphs, as well as forward and 
backward traces. However, we must also design intuitive ways in which to 
display the overall Tun-time environment, as well as making the job of a debugger 
simpler by highlighting the more interesting nodes. 

With this in mind, I will now continue to explain the program in the fol
lowing order. Firstly, we must cover some essential 3D modelling background 
information, providing us with the knowledge to build a 3D universe. Then we 
will look at the requirements of our 8ystem, providing the foundations for our 
design phase. In explaining the de~ign I will a.im to leave out uninteresting intri
cacies, whilst detailing the more interesting and important methods. As such, I 
will cover the initial steps necessa.ry to creating a 3D universe within Eclipse, HS 

well as having access to the underlying debugging information. Following that, 
I will discuss the main classes in my design1 detailing their roles, and any inter
esting methods. I will finish the design stage by providing a graphical overview 
of the program as a whole, both in terms of the Java3D scene graph, and the 
act.ual classes created. Following the design stages, I will aim to make use of 
st.ringent testing to fully explore the options, and usability, of the resulting pro
gram. Finally, I will look to draw conclusions based on the design and testing 
stages, as well as the theories we have already discussed. 

Background - 3D Modelling in Java 

The 3D modelling system required for this project must be cleanly accessible 
from within our Java code, allow for dynamic changes to the 3D world, and 
provide a high-level intuitive interface for doing so. What we require is a system 
which can interface cleanly with the Eclipse window, and allow user-interaction 
with the underlyiug 3D objects. 

One such three-dimensional modelling language satisfying these require
ments is Java3D. The reason for this is that it provides a way to create a 
three-dimensional scene, completely in Java, and in a high-level manner. \Vhilst 
giving much control to the designer, Java3D abstracts away from the intricacies 
of 3D modelling present in many other systems [3]. The designer does not have 
to worry about rendering, which is done efficiently and automatically. The de
signers aim is to construct a scene graph, which consists of instances of Java3D 
objects. These Java3D objects can consist of a variety of different component.s, 
including transforms, shapes and groups of trausforms and shapes. It. is the 
job of the~e objects to define the geometry, lighting, location, orientation and 
appearance of all the visual objects in the virtual universe. 

The J ava3D API consists of over a hundred classes present to aid the con
struction of this three-dimensional universe. The use of these will be crucial in 
designing a clear and concise Java3D program. In order to begin describing my 
approach to the creation of a memory graph, we mnst first explain the basic 
construction of a 3D uuiverse, in the Java3D environment. 

As already stated, Java3D looks to create an underlying tree structure which 

6 



is subsequently rendered. The minimal such tree in order to create a 3D universe 
is explained in figures 1 and 2 taken from the Java3D API guide [3]. 

Nllde~ and NodeCol1lnonenls (objel:[sl Arcs (object rdullonshipsl 

Vll111~llrlll\'(r;;e 

o Locale 
-----.. rderenct: 

Figure 1: Key for symbols in Scene Graph [3] 

Figure 2: Scene Graph Data Structure, with minimal tree highlighted [3] 

The diagram in figure 2 shows us the minimal scene graph, with an additional 
group node, consisting of a shape and associated appearance and geometry. 
Rendering this scene graph would produce a 3D environment, with a single 
object in it. This is a very basic Java3D program, and the intricacies are far more 
apparent when some code is produced. Options are available to the designer 
detailing the exact. viewing angles and platform that are output , interactions 
with the physical environment (Le. User input), and detailed construction of 
3D objects. 

Java3D allows a vast array of options; howf'ver certain construct. rules must 
be adhered by. For example! looking at figure 2, we could have created a Branch
Group node, consisting of further BranchGroup nodes, each consisting of a 
shape. Each BranchGroup node can then have an associated transform which 

7 



controls the positioning of all the objects below it. 
Two relationships occur in the scene graph creation of a Java3D program. 

The first is a parent-child relationship used in creating the graph. This rela
tionship mllst adhere to a number of rules. Namely, a group node can have 
any number of children, but only one parent. A leaf node can have one parent 
and no children. In other words, a tree with no backward links. The second 
relationship is known as a reference, and associates a 'NodeComponent' object, 
with a scene graph node. These 'NodeComponent' objects are there to define 
the geometry and appearance attributes llsed to render their associated visual 
object. 

The tree created can be described as having a single root, being acyclic, with 
no backward links. This means that each leaf can be fully described based on 
it's so called "scene graph path". The path from the root node, to the leaf. 
In this way, the Java3D renderer is able to configure the most efficient render 
order. for the leaves of the graph. It should be noted that this is the case for the 
parent-child relationships, the reference relationships may go between branches) 
but in essence they are not dependent on this tree structure, and simply define 
'shareable' attributes (such as appearance and geometry). This overall tree 
definition describes the construction patterns used in creating a. scene graph 
which is renderable by the Java3D renderer, and gives a general idea as to the 
processes required to making a three-dimensional user interface. 

8 



3 Requirements 

In designing any program, one must consider the requirements, in terms of 
fulfilling and achieving certain goals, whilst also adhering to the requirements 
in efficiency and usability enforced by an end-user. I will now discuss what these 
requirements are: 

Accuracy: One of the most important aspects of such a program is that no 
objects are displayed incorrectly. We must be sure to carefully produce 
any code, following design patterns if possible, to ensure that what appears 
on the sereen is consistent with the underlying model. 

Efficiency: When debugging, a user may step through many breakpoints, and 
thus, mailY visualisations will be generated. As such, we must ensure 
that this generation process is as efficient as possible. SOfie efficiency 
considerations must come into play when considering what we expect the 
renderer to do, but we must also ensure that the calculation of positions, 
sizes, rotations of any of our objects is done efficiently also. We will be 
forced to keep track of possibly thousands of run-time objects, and as 
such, we should use appropriate data structures. 

Usability: We must constantly consider the usability of the program during 
the design phase. After all, this program is designed as an interface to an 
underlying model. As such, it should be intuitive, simple, and yet allow 
for much variety in the need of the user. Be it for visualisation of the 
memory graphs. or for thorough analysis. 

Extensibility: The code should be designed to allow foe extensions to be made. 
For example, I propose the design of a layout manager to handle the 
positioning of objects. As such, it should be simple to create new layout 
patterns, without having to completely restructure the code. There should 
be a separation of concerns in this respect. 

Integration: The program should provide seamlpss integration into the Edip8e 
framework. It would make sense to create the three-dimensional environ
ment in a frame which sits alongside the debugger. A view which is only 
available during debugging, perhaps. 

This list prescribes themes which should feature throughout the design process, 
whilst giving an overview of what we plan on achieving. We will now continue 
to describe various aspects of the design which aims to meet these requirements. 

9
 



4 Design 

The design of this 3D Debugger consists of a number of aspects. Firstly, we must
 
consider the creation of an Eclipse plug-in, allowing for a side-by-side view of
 
the JDT debugger, and our final three-dimensional view. Secondly, we must
 
consider interfacing with the underlying framework that sits between the JDT
 
debugger, and the program to be described. Thirdly, we must look at the in

tricacies in creating a virtual 3D universe which allows for dynamic behaviours,
 
and user manipulation. Finally, we must consider our layout manager, the lay

outs we wish to display, and the general data structures in place for keeping
 
track of all the objects in the system. In the remainder of this section I will
 
highlight some of the more interesting aspects of the code, including code ex

amples. Any details that are omitted will be available in the code listings in the
 
Appendix. A general overview of our design can be found in §4.7.
 

4.1 Preliminaries 

This section will discuss the methods used in setting up a. framework to allow
 
for the dynamic placement of 3D visual objects.
 

4.1.1 Creating the Eclipse Plug-in 

Creating an Eclipse plug-in is a straightforward process. Dave Springgay gives 
a good outline of the processes necessary [13]. However, essentially we are 
concerned with creating an Eclipse 'View'. We give the user the option of 
opening this view whilst debugging an application, and thus, sticking to our 
usability requirements. Once we have a general Eclipse view framework set-up 
(for which Eclipse does most of the work), we can add any SWT (Standard 
Widget Toolkit) components into it. In our case, this will comprise of adding 
our 3D canvas to the frame. 

~IIIIJ;\,L lll;ll I\ill i111()\\ II" tl\ (l',ll(' I!I(, l'll'I', J)I'I~I,(',II\[' ,111,1 

; \Vllill 1,,< ('''1,,','1,''\ i" Ill,,! W(' ('I'(';l!p 

"lip" I \.', III( I, \\ I II ". ii I ilill (III I' \ IPI\ 

> / 

pub I ic void createPartControl (Composite parent) { 

II ('1(',11(' ll('~\ (\llllj)(Je-lll' O!lj('( I 12.1\f:'I\ 1,(\I'('II( litleit' 

Composite composite = new Composite (parent, SWT.EMBEIX::lED); 
1/ ,'\cl 11j{' :21> la)ollt 111<lJl;q,!,er ;1." ,I FilIL"i">IJI 

composite, setLayout (new Fill Layout (»; 
Cr,',lIt' ;\ i'rdlll(' 10 add IlUI' (,;'11]\';1," IlIto, nlllllg 1.\1111 illl~
 

"tiwi (()lllpUll('lllo, 1\(' 1\1..,11 10 dl...,p];\\
 

= SWT.AWf, new_Frame ( composit.e); 
~"('I lll,' 11l1('III,I] Ilillll(' h\<'ul !o il FI,I\IL\\()IJI 

,set,Layont (new FlowLayout ()); 

('l(',ill' ,lIl 11,,1.11" ll,'lpll,,1' "IJI('('[ I() c11'''] \\1l11 .ill Illld"I'I\IIJg dl,III!.C( 

1101 il'i(';l1 i('II~ '-;ul,s,'ril,(-' til" Ilpd,oIp llanell('!' 10 OIJr Illlpl'llledlill'V 

d(,)J\lg~',lllg 11'(\111'-\1"1 j., 

, / 

Updat.eHandler uh = new Updat,eHandler(this); 

10 



DebugModelContainer ,INSTANCE. add Listener (uh); 

J II I I I d 'i:-, (' I hi' \ i(,\\ ,( 'I ('ill (' ;1 \' i I t It,l I '{T) IIIII \'1'1'-"(' ,\lId il ]J 11 \ -.. I( ill 

/ / Cd II V'I.o; ) 

init 0; 

P,I(K Ilil' II"'-lillill!~ Ildlllt' 

f. pack (); 

II 1)(':11 \\'illl IJWilll(lllliJJj; LlJ(' (,ul'l'('('1 <l.i:ijl('ct lall(lll dllrJlIg 1('",i/,lllg 

composite. add Control Listener (new Control Adapter () { 
public void controlResized(ControlEvent e) { 

canvas3D. setSize (( in t.) (r. getBounds (). height * wideScreenRatio), 
. getBounds (), height); 

} 
}) ; 
/{ ~wl	 III(' illJlidl .<"I/P 

canvas3D. setSize (( i nt) (f. getBounds (). height * wideScreenRatio), 
r. get Bounds (). height); 

} 

Listing 1: Creating the View plugin 

Listing 1 shows us the implementation of the callback method used by Eclipse 
to generate the view. What we expect to happen is that Eclipse will call this 
method when the view needs to be created, providing the Composite object 
in which to place our 3D view. At this point we must also subscribe to the 
aforementioned framework, sitting on top of the JDT debugger, which will pro
vide detailed information regarding the underlying model. This will further be 
explained in §4.1.2. Our initialisation method will then be discussed in greater 
detail in §4.1.3. 

Also of interest here is the resizing procedure we create. In order to a.llow our 
3D interface to be resized, we pass on arguments from the surrounding frame, 
to the underlying Canvas3D object. This is the component of the Java3D scene 
graph which controls the physical view output to the user. By passing on this 
information we can dynamically change the size of this canvas. 

4.1.2	 The Underlying Framework - what we aim to build our visu
alisations from 

As we have seen 1 our intention is to subscribe to a framework sitting on top of the 
JDT debugger. What we can expect here is that this system will communicate 
with the debugger, process the information received, and then make available to 
us information we may want. Our first requirement is to be notified of underlying 
model changes. In other words, we expect the model to provide us with a list of 
underlying objects, each time the user moves to a different debugging state in 
the JDT debugger. Thus, we subscribe, and what we receive are notifications 
each time the underlying system changes. These notifications consist of all the 
underlying objects which have been created, or are new, and all the underlyiug 
objects which have been modified 1 or had their state changed. 

This subscription system provides us with a way of interfacing nicely with 
the intermediary framework. We will always receive new and changed objects, 
and these objects will provide us with access to the underlying model. The type 
we expect to receive in these updates is called an 'IDebugObject'. Our job is 
then to construct the 3D world from our collection of these IDebugObjects, and 

11 



the information available for each one. 
This is a summary of the interface provided for an IDebugObject, showing 

us the potentially useful methods which we have access to: 

public interface IDebllgObject { 

public IJavaVallle getVallle(); 

/' , 

'"'1,'1.\111, lillk~ tu ()lJjt'('It>, ill('ludlllg 111(' vnll.lIJI" 1"Il)t'~l'lIlll1l-', 1111' lillk 

'I!III,]\\" \ 11!!LIHkJ-:,( Ppt i011 

pub I i c Map::::IDebllgObject, IVariable> object Links () throws NllllLinkException; 

" . 

I lOl('IUlli h,l('klillk~ 10 O/)J"(l..., illl'llJdillr, Iii,' \illl;dil" l"jill'.""'llllllg Ill(' 1111J... 
I (liliro\\:-, :\11I111.illkExn-'pt i(lll 
; / 

public Map<JDebugObject, IVariable> backLinks() throws NullLinkException; 

, (;('I~ tll(' ('\lrl"l'llt (,tI( \llill(,11 1';11':" l"illik 

• U lelill II 

'/
public double getPageRank (); 

Listing 2: The IDebugObject Interface 

It is this underlying framework, and update process, whieh we rely upon to 
provide us with accurate information for the model. The implemeutation used 
is a current project by Luke Cartey; however, any implementation adhering to 
this same interface would provide the same functionality. Hence, we modpl our 
3D view without the absolute need for defining the underlying programming; 
language. If we consider extensibility, it should be clear that the designs we 
continue to explain could in theory be portable to any programming language 
for which memory map style properties can be extracted. 

4.1.3 Constructing the Three-Dimensional Environment 

As we have seen in §2, Java3D requires a minimal scene graph to be built. This 
essentially constructs the 3D environment, and the viewpoint parameters. This 
is our first step in creating the overall visualisation, and is accomplished by 
setting up the minimal scene graph as in Diagram 2. The code which accom
plishes this makes a call to the Java3D ut.ility class for universe creation. This 
class generates our minimal scene graph structure which is required. However, 
our job is to construct a new branch, and then modify this when necessary. In 
other words, we instantiate a universe with the SimpleUniverse object 1 and then 
attach our own BranchGroup which will contain all of our visual objects. This 
main BranchGroup creation method is shown in listing 3. 

12 



'I'lli" IllI'l!lud ~lls IIp I\w lJldill Ihilll(!I(:rUlljl palilllll'I(I~ (hi,,,, I.e; til!' IllillWl1 

ul IIII' ,L1Vil,\(l ,"'(l'II<' !-',lilplJ which will 1'llllli!.i1l all ul (Jill' '11111 \11111' (Jhj<'cl.'" 

\\" ~(I p;lrdllwl"I,'" ill( llldill.L', lig,lll ill:..', hi'\( kgr"lllld < .dullr ]H,'llldlllg .... jll,I'ri' 

;JII.I • djldhillti,"" ,d' til,· llidin Ihdlw!l(;rullj) 11(1011 \\'c ,1],..,11 il."'f-'II:II 1),1:-

Ilt';lll<'II(:luup nil ,I",'-,I)l 1;\II,rj Tr<lllsl'()I'lIl(:rolip which will <It'll! \~llll llll' 

j 1 dll~IC)1 Ill" 11\,\(11' l11JU11 1110' \\ 11<.11' 11111\ 1']'.'-,1' 

'!l'll'IIJlll	 '(Ill' i\lilill I~J'HII('II(;J'oIIP )111(11' if' A Il(llll' (II ddd i111 (II<' ViSIJdl ..I> 

,,j) I" ( I" (u, 

pub lie	 BranehGroup crea,teScene3D () { 

('1"',11" till' \lilill HI ;,1)[ h<':IUlljl 

rnainBranchGroup = new BrauchGroup l); 

('It'd(' til, l"lill](liJl':' II'al llP(j,.
 

.'/ Till'" "jH',il'i,':,; Ill(' sii'f' ()j' 1111' rt'II("'rill~ :-ip"!'('
 

mainBrauchGroup, addChHd (boundingLeaf); 

// ('II'i1I<' I ill' 1l,lck:-;r()IJll,1 

mainBranchGroup. addChiid (bg); 

II ('n',I'11 till' Iri1l1..,f(lllIl grr>llJ! ll<,1dl' 

mainTransformGroup = new TransformGroup (); 
// .'1('1 (Ill' dl'))i(ljHla(I' Idpdbllilll'S 1()1 tl", Irnlll()llll(;IIJlJjJ )I"dl' 

\11,1 ti,t'	 IIIi!i)1 '11:lll~Ir>1111(;)<l111) II''']P In tIll' III:lIl1 l~i';III('!J(:I(III]J 

I'hi~ 1I1('(I11~ IIIP IIWill I I f111"f,)] III group Will Ill' III 1'1"',11;(' of ,III I Ill'
 

! Ir;lllbllllill;,.ti"II.'-, ()I lilt' IIllil,'I"l' .i,'-, ;1 \\iJoj(,
 

mainBranchGroup, nddChild (mainTransformGroup); 

ret urn	 mainBranchGroup; 

Listing 3: Scene3D initialisation method 

What we now have is a usable 3D environment. We can create Java:JD visual 
objects, add them to the main BranchGroup node created, and they will appear 
in our canvas, At this point we must also create picking methods l to enable 3D 
visual object selection, navigation behaviours and user interaction behaviours. 
I will further explain these methods in §4.6. 

4.2 The Update Handler 

As described in §4.1.2, our intermediar}' framework is designed to provide us 
with updates containing IDebugObject objects, We have seen the interface for 
the IDebugObjeet in listing 2: and we have seen in listing 1 that we instantiate 
an UpdateHandler object, and pass it to this intermediary framework. What 
we propose, is that this UpdateHandler will receive, and process all update 
commands, We expect all representations of the underlying memory graph 

13 



nodes to pass through this update handler. Hence, the update method is shown
 
in listing 4.
 

public void updateDebugModel(IDebugTarget debugTarget, 
Map<DebugChangeType, List<IDebugObjeet» objectsChanged) { 

/1 ("llt'd, l'OI Ilf'W ()h.i<'CI~ III I!I(, >:\,:-,1('111 

i r (objects Changed. containsKey (DebugChangeType .CREA'IID)) { 

// ..;('[ Ol1I 11"1(11,,( I" III'> "IIJ,',lS \\hi,11 .Ire .\1,\\
 
iterator = objectsChanged. get (DebugChangeType.CREATED). iterat.or l);
 

11,'1<1(1' tIll "'1:":')' ","Ildlll,"" 1',lt)' lIJI'hw.:,O]ql'cl !o lit,' \'j(.\\"{!J "I>]I'[] 

while (itel'ator. hasNext()) {
 
IDebugObject itemp = iterator. next () j
 

view3D. createNew (iternp);
 
// :--'d llll:' "Int, "I 111("~1 (1IJj,,'LlIl 1)1l.]",I.-, 10 \H\
 

View3D.idoToObject3D.get(itemp).state = "new";
 
)
 

}
 
I, 

11"1<11,' 1III'ol1gh lill' (!LllIgI'11 u!'jl'('l ..... 1111 111'(',1 I (J -"'Ild till-III I]Jl"lillgll I () 

II,\" \'il'\\'\ll olJj("('1 IwwP\\'1". ill:-,I SI'I 111'-'11 :-01" I (' ;1:-' (lIAN(Hl 

, I 

11'-1".111' 1111"lIllgh ,111 llll' dl,ll'I('d IIJl'!llH"OI'II-l·I.-. Ij[dil\ \1!'\'"Hl pi 1111'11 

1'!-lllUl"ill 

'! 

il ILlvillJ-', pllJr,-,,:-,('1! nIl o]l.lecls, lill.ill;·'" \'11'\\ 

rlISI l'XI1"H("] "il 111(' Ul,j"l!:jll ,,1'I'll-, :-,Iill ill 11111 ....\:-11'111 

// \\'pr]o this h.\' V(· .. p~~illg r,lll" ,"Lllit trl.l(lpllll--', 01 Ill('bllgOIJ.lI'CI:-, 10 Ohl("'I'~I)" 

/1 Ii pu"itiollilll--', dl'pl'llib "H lillik IIl'd,II,' lill' 1,Illk .Iud (l""ili"11S 10 
II i(("("ullllllnd;llf' I hf':-'l' 1·llillI~'."-; 

// \\,' (11('11 ]H'rfOl"lll all IIl/ddl(' "II '-;Il(, OIJjl'<'1 

for (Object3D o3d totalListOfObjects) { 
o3d . update ( ) ; 

} 

} 

Listing 4: The Update Handler 

Essentially, we have notified the View3D object, our View maintainer, of all 
the changes to the underlying system. We set the current state of each Object3D 
(Our 3D object representation detailed in §4.3), and then we perform an npdate 
for each Object3D, creating the new layout in the virtual universe. 

Initially, I had decided to update each object as it was sent to the View 
model. However l as we discuss later in §4.5.3, our layout of these objects depends 
on each other, hence, we shouldn't perform any changes to the Objeet3D's 
representation, until all the objects in our model are known. Once all the 
objects have been passed through to the View, we know the system is stable 

14 



once again, and as such we can re-calculate our layout in the virtual world. 

4.3 The Object3D Class 

Having briefly seen in §4.2, we use au Object3D class to store details of our 
visual objects. Each Object3D instance in our system represents an underlying 
node in the memory graph. As such, it must deal with positioning of the visual 
object, appearance and size, and attaching itself correctly to the Java3D scene 
graph. We also integrate within this class methods for generating name labels 
for the object, and methods for generating directed lines to other Object3D 
instances in the virtual world. 

As this class is somewhat large, I will simply highlight and explain certain 
interesting methods below. 

Object Positioning 
As we will discuss in §4.5.1, we will use a layout manager to calculate the 
actual positions for each object. However, placing this visual object correctly 
in the 3D space is the job of the Object3D class. Each Object3D has its own 
BranchGroup Node which is directly attached to the main BranchGroup. This 
means that we can apply a transform to the TransfromGroup governing this 
node, in the knowledge that all Object3D's will have the same reference point. 
In other words, because each Object3D is at the same level in the Java3D scene 
graph, they each are given the same default location. This default location is 
unimportant, as long as the visual objects are placed correctively relative to one 
another. In this way, we translate the TransfromGroup for this Object3D by 
the vector given by our layout manager. 

In order to allow for the dynamic changing of positions we may require for 
certain layouts, we query the layout manager each time we npdate the object, 
and update our vector position. However, transforming the same Transform
Group will result in moving that direction, from our current one. Clearly this 
is not what we want. Instead we create a new Transform3D object each time 
the object is updated, thus resetting to our default location. 

General Appearance summary 
In order to make the visualisations somewhat attractive, I decided to represent 
each underlying object in the memory graph as a sphere. Each object is then 
given a colour, relative to its state. Namely, green for new objects, orange for 
changed objects, and white for unchanged objects. Each object is given material 
attributes which can be set in Java3D. These consist of how thl~ object reacts 
to different lighting. As we saw in listing 3, our 3D universe ha...<; a light source, 
and direction. Thus, we set our objects to utilise this. providing a nice texture, 
and a simple way to differentiate between object states. 

Creating Name Label 
Each sphere represents an underlying node in the overall memory graph, how
ever, in order to differentiate between them, we can apply a name label to each 
object. This name ohject is actually a three-dimensional object in its own right; 
we create it by using the font extrusion class available in the Java3D API. We 
then place it on the edge of the sphere by generating a new TransformGroup 

15 



and BranchGroup for this object. In the scene graph, the name label's Branch
Group would be placed as a child of the associated Object3D's node. This is 
constructed much like the Object3D themselves, in that, each name label object 
is given a default location, this time at the centre of the sphere. A simple trans
form moves them to the edge of the sphere. In essence, we have put the objects 
themselves in charge of their name objects, making positioning straightforward, 
and providing the user with the ability to differentiate between, and focus upon, 
certain objects of interest. 

Creating inter-Object3D lines 
In order to allow for the smooth addition and removal of lines between objects, 
we also put the objects in charge of any links they may have to other objects 
in the memory graph. There are two aspects to this problem, the first is that 
we must create lines joining the two objects being linked and the second is that 
we must be able to visually determine the direction of this relationship. The 
IDebugObject, as seen in listiug 2, provides a list of all references made to any 
other objects. We utilise this list to discover the necessary links, and as each 
link is directed, we can place the Object3D class in charge of maintaining these 
links when and if they are necessary. EssentiallY1 we can be sure that if each 
object displays links for each of its references, then all the references in the 
underlying system will be displayed visually in the virtual world. 

In order to tackle the first problem, we utilise the Java3D LineArray class. 
Assume the SOUlTP object has position V8ource, represented by a three dimen
sional vector. This vector represents the position of the object in relation to the 
centroid of the overall design space. We can extract a similar vector for each 
object referenced by the source object. As each Object3D maintains a vector 
position for its object, we extract a vector for each of these target objects, as an 
example, let us call it Vtargeti' Where each i represents the various objects our 
source object may reference. We now have a list of (vsoUrCGl Vtargcf.,) pairings. 

As we are maintaining the lines of this object within the Object3D class, and 
hence, in the Object3D's own sub-tree in the scene graph, we must make a few 
further calculationl'i. \Vhfln W(~ create new child BranchGl'OUp and Transform
Group pairs for our Object3D items, they are given the Object3D's vector po
sition as a root position. Hence, we must calculate the vector 1JSOUTCC ---t V1argff, 

for each i. To find the t.arget objects position relative to the source objects, we 
simply subtract Vtargeti from VSOllTce' We can then create a new BranchGroup, 
and place within it our Jines generated from points (010,0) and Vtarget, -Vsource' 

This constructs a line joining the two visual objects in the virtual world. 
In order to represent the directed nature of these lines1 we must construct 

arrow heads. Given the three-dimensional world we are in, we represent these 
arrowheads using cones. Java3D has an inbuilt class for Cone creation, however, 
this class simply creates a cone of given dimensions. Its placement is the job of 
this Object.3D class. The Cone class takes as arguments a base radius, a length, 
and an Appearance parameter. In order to further distinguish line direction, 
we create the appearance of the cone to match that of the source object. This 
makes it easily recognisable when we look at the multi-colour naturp of our scene 
graph1without being over bearing. 

Calling the Cone class as described, generates a cone positioned at the Ob
ject3Ds relative root, and orientated along the y-axis of the 3D environment. 

16 



In other words, this Cone will appear at the centroid of the Object3D's sphere, 
pointing along the positive y-axis. In order to position it correctly, we must 
perform some vector manipulations. Firstly, we rotate the object, and then we 
translate the object. 

The rotation involved is calculated using the knowledge of orthogonality in 
vector spaces, such that: 

_l<X,Y> 
angle(x, y) = cos Ilxll.llyll 

The inner product represented by < x, y >, is in fact calculated using the dot 
product in three-dimensional space. We can use this equation to calculate the 
angle between our current cone orientation, and our desired cone orientation. 
Notably. we consider our cone as pointing towards (0,1,0). And our target object 
a.', pointing towards VMrecfwn" where Vdircctiofl.; = Vtarget, - VS01Jrcc. This allows 
us to calculate the following: 

-1 (O,l,O).'l.Jd7-r€ct.wTl.;e= COS 
IIVd,rution, II 

This provides us with f), the angle between our two vectors. What we next need 
is the axis of this rotation, this is in order to actually rotate the cone. In order 
to calculate this, we normalise our target object direction vector, and calculate 
the cross-product of the two: 

Vdirect?:oni 

Ilvd;m'wn, II 
l',ototionalAxlS = (0,1,0) X Vdirection .. ",m, 

This provides us with a vector perpendicular to both vectors, perfect in provid
ing the rotational axis for our transformation. In the event that B is collill(~ar. 

in other words, either 180°C or 0 °C, the cross product will give us O. Hence, in 
this case we check to see ife is 180"C, and ifso, set the axis direction to (1,0,0). 
Otherwise, the angle is 0, and hence the axis of rotation is unimportant. 

With the axis of rotation calculated, along with the angle of rotation, we 
simply perform this rotation on the code object. \Ve then translate our now 
correctly pointing cone so it sits on the edge of the target object. This process is 
repeated for all i, such that each target object which our source object references 
has an a,..:;sociated line and arrow head. 

4,4	 Maintaining the Java3D scene graph - The View3D 
Class 

As we have seen, we delegate much of the visual control to the Object3D and 
LayoutManager classes. However, what we must ensure is that we maintain a 
correctly formed Java3D scene graph, and keep track of all the Object3D in
stances in our current program. This job is performed by the View3D class. 
This class has the job of creating each Object3D instance, and placing it cor
rectly in the scene graph. It provides a static mapping of IDebugObject objects 
to Object3D objects. This is done in the form of a HashMap. 

The View3D class could be considered as the hub of this program. It keeps 
track of all the objects and the scene graph, communicates with the Eclipse 

17
 



i 

framework (as seen in §4.1.1), and as we will see in §4.6, it handles all of the 
user interaction methods. The actual details of this class are somewhat trivial 
however, and as such, I will refrain from going into much detail. 1will give more 
information about the user interaction aspect later in this report , and the full 
listing of this class is available in the appendix. 

4.5 Managing Different Layouts 

This section will deal with the positioning of our visual objects and how we 
can use a layout manager abstraction to help deal with this problem. We will 
then discuss how using an importance measure can allow for a more advanced 
layout system, which bases positioning on importance. In §4.5.4 we outline such 
a layout technique, and discuss its usability. In §4.5.6 we continue to look at 
how importance can affect us, but propose that items referencing each other 
should be positioned together. Hence, we outline a different algorithm, and 
draw comparisons about the two. Finally, in §4.5.7, we look at how to create 
forward and backward traces as discussed in §1.1.2. 

4.5.1 Creating a Layout Manager 

Each Object3D in our system looks to gain information about its position vector, 
from a dedicated layout manager. Seeing as one of the most interesting aspects 
of this project is the positioning of our visual objects in the 3D environment, it 
seemed only sensible to separate concerns, and create a layout manager inter
face for which any layout manager must extend. Our layout manager interface 
contains only two simple methods: 

/ i.j 

" Tlli,-; (1;1;,;, ;,(')V(';, fl" il ('(11\11'0111'1 !llr tIll' p(hilillllh o!" ('dcll Olllt'cl:{IJ ill 111l' 

h \ "I ('III 

public interface LayoutManager3D { 

1]1l' Ohj('(131) IH:' Wil1\1 Iht' j)ll,"ltiuII ur
 
~'I('lllrll \ 1]lll'l dlllll'll"lullal \l'I't()1 rrojlll'"Pllllllg II '" jJll"IIII'11
 

public Vector3d getPosition (Object3D o3d); 

1111" IIH'IIICid 1('11:; (11(' 1.<I\-Ul11 \1,111,(1-';1'1 Iu Il'«'II;,Ic!('1 il" P0;,1111J1; \,dlll'" 

\.\1(' c,\ll Ihis 111('Ih()<! W1H'll l!tv.' llud('llyilig 1I1()dc] (!lilllg<'h 

public void updateAIIPositions (); 
) 

Listing 5: The Layout Manager Interface 

As we can see, we ouly expect our layont manager to respond to Object3D 
instances querying the layout manager for their position, as well as notifications 
that the underlying model has changed. However: as we will see, the more 
complex the layout gets, the more work it has to do behind the scenes. 1will now 
discuss the layout managers implemented in the system, and the increasingly 

18 



difficult challenges f""ed as more information regarding the underlying model is 
used. 

4.5.2 Simple 3D Layout Designs 

InitiallYl we consider layollt managers for which a ba.re minimum of information 
from the model is extracted. Essentially. they just collate a list of Object3D 
instances in the system, and generate a position for earh. Two such implemented 
layouts are called the GridLayout, and the StackLayout. 

Grid Layout 
The GridLayout manager simply creates a mapping of Object3D instances, to 
three-dimensional vectors. Each time an object asks for its position, if this 
object is in the mapping, we return its associated vector. Otherwise, we generate 
a new position in a grid-like fashion. We start out at (0.0,0), and each time 
increase the x position by the size of the object and some space. When the 
width of the view has been filled, we reset the x position to 0, decrease the .Y 
co-ordinate, and continue as such.. An extremely simplistic method for filling 
the screen with objects. 

This provides a very simplistic view of all the objects in the system. We 
essentially show the order in which objects are provided to the model, and not 
much else. It makes it very ea."y for a user to see how many objects are in the 
system, and their names 1 however, when we show the links between objects, this 
model does not fair so well. We also fail to utilise the third dimension available 
to us. 

Stack Layout 
In order to utilise the third dimension 1 we act as before, but increase the z 
co-ordinate each time the screen is filled. In other words, we create a stack of 
grid patterns. This again I is very simplistic, and simply provides the user with 
a time-line of objects. It makes it very difficult to do much else, especially when 
considering; links between objects. 

The two views discussed work as a general view layout. They are designed to 
be as simple as possible, and provide the user with a clear representation of the 
underlying system, even if sueh a representation rarely gives new insight into 
the program. However, they demonstrate the ability for the layout manager to 
abstract away from the intricacies involved in the Java3D model. We simply 
keep track of a set of three-dimensional vectors 1 nothing else. 

These two layouts are also static, once an object has a position given to it, 
it is set. Hence, we don 't need to make use of the update method, it simply 
has no effect. We will see as the views get more complex however, that such 
notifications become necessary. These two views are designed to give an extreme 
example of how simple the layout manager can be, but it also aims to show that 
the layout of the three-dimensional objects will determine the success or failnre 
of this three-dimensional view. 

19 



4.5.3 Ranking The Objects 

In order to improve upon our simple layout designs, we must increase our knowl
edge of the underlying systems, and use that information in constructing our 
layout. One seemingly useful way to do this is to calculate a rank for each 
object. The underlying framework provides methods for us to do this, in fact, 
it utilises a system much like PageRank; an algorithm assigning rank based on 
the hyper-link structure of the web [5]. However, instead of links to other web 
pages, we consider links to other objects. As such, we can call the pa.ge rank 
method for each IDebugObject, and get an importance score for each visual 
object. With the ability to assign a score to each object, we can design our 
layouts based on this scoring system. We propose that the higher the objects 
importance, the more interest it poses to the end user. 

4.5.4 Divide and Resize Algorithm 

OUf aim is a design which utilises both the three-dimensional properties of our 
system, as well as extracting information from the underlying rank of our ob
jects. The algorithm I propose here makes use of the objects rank to determine 
positioll, and utilises the extra dimension available. The idea is that the most 
important object, should be at the centre of our focus. As the importance score 
drops, these objects should move away from our focus. In order to do this, I pro
pose a system which utilises both the objects size, and its position to visualise 
its importance. The proposed algorithm does the following: 

1.	 Rank all the objects, and place them into an ordered list. 

2.	 Extract the first item, place it at the root, set its size parameter as the 
largest object you will want in the graph, and the bounding sphere the 
size of the view we are working with. 

3.	 Create a set of 5 or 6 lists, depending on the root nodes origin. We transfer 
all the remaining items in the ordered list, incrementally, into the sub-lists. 
In other words, the first list gets the second ranked ohjed, the third gets 

the third ranked, etc. Until the original list is empty. 

4.	 ,,,re then go back to step 2 for each list. However, we move the root position 
out in all 6 directions, halfway to the edge of the bounding sphere, from 
the current root node respectively for each list. We also half the size of 
the bounding sphere we are allowed to work within, and we half the size 
of the object node. ,,,rhen we are past the first iteration, we only create 5 
lists, as we don't send any objects back in the direction they came from. 

This is performed by the following two methods: 

pdv8te void createRankedListOfObjects() { 

/I ! liS! ('XII.l('1 ,,11 111(' tll,jl'(I.II) "lJi('c!.c, .'-.1 ill ill 0111 S~.'-,I('lll 

Collection<Object3D> tot,alListOfObjects = View3D. idoToObject3D. values (); 

tota.1RankedListOfObjects = new LinkedList<Object3D>(totaIListOfObjects); 

~'111 t Ill' 1,,11<,. t i()11 I',I:--,'d ;>11 PilI!.
 

Collections. sort (totalRanked ListOfObjeds ,
 

20 



new Comparator<Object3D>O { 
pub lie in t compare (Object3D a.rgO, Object3D arg 1) { 

double d iff = argO. ida. getPageRank () - a,rgl. ido .getPageRank (); 
if (diff > 0) { 

return -1;
 
else if (diff < 0) {
 
retul'n 1;
 
e I s e {
 
return 0;
 

} 
)); 

,'-;" \'(' I II i", I 0 I :11 () I) I p( t "Ill kill g 
currentRanking = (LinkedList<Object3D» totaIRankedListOfObject.s. clone (); 

Listing 6: Ranking The Objects 

private void creat.ePositions(Vector3d root. double radius, int cameFrom, 
LinkedList<Object3D> rankedListOfObjects) { 

1/ 1'1;1("(' 1<I<d lIod(' ill !l0silioll 

idoVectodvIap. put( rankedListOfObjects. removeFirst (), root); 

II ('1'(';]1(' "'llb-li~(s 

• I li\'ldl' I i,.,1 III' i III.. 'il (, tI('P('lldlll"" 'III I ,llllel )'1l1)i lUI" 1\"1) _ 

int i = 0; 
while (!rankedListOfObjects.isEmpty()) { 

switch (i) { 
cnse 0: 

i++; 
if (cameFrom = 0) { 

break; 
} 
110 . add (ranked ListO fO bjects . removeF irst () ) j 

brenk; 
case 1: 

i++; 
i f (r'Lmp.FrOlU I) ( 

brenk; 
) 
111. add ( rankedListOfObjects. removeFirst ()); 
brenk; 

} 
} 

if (cameFrom 1= 0 && !IIO.isEmpty()) { 
neatePositions(new Vector3d(root.getX(} - radius, root.getY(), 

root.getZ()), radius I 2,1, lID); 
} 

} 

Listing 7: Method for Creating Positions 

21 



The mnin point to highlight here is that we can keep in view any number of 
objects, and yet maintain a constant sized space. We make sure our most 
important object is the focus of attention, and we ensure that focus draws away 
as the importance lessens. In constructing our sub-lists, and hence, direction of 
spread, we maintain the order inherent in the list, and hence, we do not need to 
worry about sorting for the sublists. This saves dramatically on the complexity 
of the algorithm. 

This system provides a very usable overview of the underlying disconnected 
mcmory graph of our objects. Importantly, this algorithm maintains focus on 
the important objects, whilst removing clutter around them. It does this by not 
creating a sub-object space, where the object just came from. Hence, objects 
aren't placed crowding the important objects. This view seems to be a.n ideal 
way to represent the memory graph, whilst maintaining usability, a.nd increasing 
the number of objects in the screen space compared to a 2D design. An example 
is shown in figure 3. 

..~ .. "'. 
._~----~"""t-I!I_~_...... 

Figure 3: The Divide and Resize Algorithm in use. 

22
 



4.5.5 A Different Approach to Determining Object Size 

As we have seen in the Divide and Resize algorithm, the visual objects size can 
play a vital role in the usability of the general layout. The halving method 
employed in the divide and resize algorithm seems rather naive, even if it works 
well visually. Given that the model has access to an importance score for each 
object, it would seem nonsensical for two objects to be of the same size, when 
one is vastly more important than the other. Hence, I suggest a sizing algorithm 
based solely on the importance of the object. In the Divide and Resize algorithm 
of §4.5.4, the pattern of decreasing size will still exist by definition of the way 
the objects are positioned, however, the size may now be deemed as having more 
relevance. 

This solution will also work with any layout manager pattern, regardless of 
whether it uses importance in positioning. For example, our naive grid and stack 
methods will instantly be more usefnl with such an implementation. Hence, I 
now model the objects size as a function of its importance. This is done by taking 
the highest scoring object, setting that at an acceptable size, and calcnlating 
every other object's size as a ratio of this size, corresponding to the ratio in 
importance scores between the two objects. We shift the available range such 
that every object in the system will be visible, generating a minimum value. 
Thus, every object's size lies between our minimum, and the size of the most 
important object, determined by its relative importance. 

4.5.6 Clustering Method 

As we have discussed thronghout this section, our aim is to draw upon infor
mation in the graph strncture, and present this information as well as possible 
in the layout of our 3D environment. Following on from the Divide and Re
size algorithm in §4.5.4, we build an extra layer of information. What we now 
utilise is the fact that in order to keep the 3D graph as 'tidy' as possible, it 
would be preferable to keep all similar items close together. Drawing upon 
knowledge from computational linguistics, we can apply the 'Distributional Hy
pothesis' [10]. In linguistics, this refers to gaining knowledge regarding a single 
word from the company it keeps. We apply this to the object model by draw
ing upon the knowledge of refel'enced nodes, in order to define the positioning 
of a single node. We essentially cluster groups of objects together. Thus, our 
disconnected graph is divided np into its connected sections, 

In order to achieve this, we use the framework of the Divide and Resize 
algorithm, however, when producing our sub-lists, instead of distributing on 
importance alone, we distribute on the context of the objects. In other words, 
we put all objects in the same connected graph, into the same list. We can 
perform this creation of groups of connected objects, by itemting through all 
the node points in our current subgraph, iteratively calculating the references it 
contains as we go. We enSUTe that each sub-group still maintains its importance 
order however, an important feature of this algorithm. 

The other main difference between this algorithm and the divide and resize 
algorithm is that we remove the space requirement. We no longer keep all the 
objects within a predetermined sphere of 3D space. In essence, we allow the 
graph to grow outwards in all directions. In order to do this effectively we 
always allow our objects to move away from the centroid, once we reach a point 

23
 



where the subgraph is fully connected, we apply the divide and rc:;izc algorithm 
as before. 

What this provides us with is a simple solution to the problem of over
crowding and crossing of links between different parts of the program. \Ve 
now separat.e out the different memory graphs, and provide an extremely user
friendly approach to dealing with the disconnected nature of the overall graph. 
In e~~ence, we maintain the most important object as the centroid, and cluster 
the graph based on our reference context measure. We then apply this itera
tively to each of the subgraph's most impOltant objects. 

Figure 4 shows us the view this algorithm achieves. Figure 5 shows a side by 
side comparison of the two layout managers, showing the added detail brought in 
by the clustering model. It also shows a midway step, whereby we have clustered 
the initial group, before finally showing the result of doing this iteratively for 
each sub-group. It must be noted however that due to the added complexity 
of this algorithm, our code is no longer quite as efficient. A more detailed 
explanation and the effects of this are detailed in §5.2. 

... ,.......--...- __._... ~-
Ii ...... '" 

---.,~...=;;..----.... 

Figure 4: The Clnstering based layout manager in Uf;(~. 

24 



Figure 5: A side by side comparison of the two algorithms. 

25
 



4.5.7 Generating Forward and Backward Traces 

In §1.1.2, we discussed the notion of forward and backward traces. In our model 
this is essentially the equivalent of following all the forward or backward links 
from an object 1 and drawing the tree representing that link structure. V\'e give 
the user the option of selecting the root node from our generalised view, and as 
we have constructed our generalised view based 011 importanC€l we know that. 
the most links will be found using the most important node. 

Firstly, the user selects the node they would like to act as the root node. All 
the objects in the scene graph are then removed, and we call a tree generation 
method in the associated Object3D instance of the selected root node. This is 
performed by the method shown in listing 8, located in the View3D class. 

public void createTrace() ( 
Object3D tempo = currentRightClickedNode; 

Coliection<Objeet3D> c = idoToObject3D. values (); 

if ('1('(11 tIll' ",,{'Ill' ,!.',Iilpll
 

Co r (Object3D 03d c) (
 
mainTransformGroup. removeChild (o3d. getBranchGroup ());
 

1 ' 
;;i~',llil\' \llli,'11 ,,1!j"("1 i,.., Ill<' )1101 \\'(' \1(+(( (Il kllll\\" I hi,.., 10J 1\111111'1 

I"i~'.hl click ('velll". 

'I 
currentRootNode = tempo; 

II (I('illl' Ir('(' hlYOIJi lor obl('(I'" 

if (traceDiredion = 0) { 
il ('I<'ill,' f'ol"lI'ard tr<i('(' 

tempo. createCurrentTree (): 
tempo. displayObjectLinks (); 
else if (traceDirection = 1) { 
il ('n';!!,\' ba.l'\(Wil,rd 11.1('(' 

tempo. createCurrentBackLinkTree () j 

tempo. dislllayObjectBackLinks (): 
} 

\\'(' 01111 \\',1111 In \Ii~hlirlil ,II<' Illll! lJll,k'
 

tempo. highlightCurrentObject () j
 

} 

Listing 8: Creating the Trace - View3D's role 

The Object3D instance for the root node then begins to construct the tree, it 
simply iterates through all the objects it has links to, and the object.s those 
objects link to, and re-creates them in the scene graph. The positions of the 
visual objects are calculated by an associated tree layout manager, which each 
Objl-'Ct3D instance accesses. The Object3D instance then draws the directed 
lines connecting the graph 1 including backlinks. As backlinks are possible. we 
have to keep track of the objects we have seen, this makes sure we don't attempt 
to create an already visible object. For a forward trace, the associated method 
is shown in listing 9. 

pl'ivate void createSubObjects() 

li"IIIl)\l'ill!\ IIIIP.", if [lil'~ i\I(' (111'11'lilll llil dH,plill' 

26 



if (linesVisible) {
 
removeLines ();
 

}
 
II l{<ollhl\'i' (!I(, I'rilllhlurllI(;rOlJp 101 1111c, OiJj('(I,IIJ. 

bg. removeChild (tg) j 

II (;l'I po,.., 1 I 1011 frolll I!lp It('(' 1;I,\lllIt 111.111'1)..'/'1 <111(1 "'(! 

il 11l;11 P0:'lt](lll lor lltl..., ()lJj('cl.3ll
 

Vector3d pos = treeLayout,getPosition(this)j
 

II ('1('.11(' oil.l('cl 1I11\\ !J,I",cd oil il'" II('\~ 11'.1((' /l'l,..,iliilll
 

neateObject () j
 

if ,\dd 11(,\,,1\' IIjJdill('d IlI'illC!ICIIJlljl I() 1)1(' S( ( II (' ~I ,Ipll 

view3D, mainTransformGroup, addChild (bg); 
H('",lllll' !I('ldll", II 1)](',\ \\pr(' \i",i!Jlp 

i/ ('Ir'dll' 1,1(.11 111:1j) [til tlii" Ohj('cl:lIl'", 1i II k" 
Map<IDebugObject, IVariable> linklist linklist = ido.objectLinks(); 

I/\\"('iuld 1111" idCl 10 our "'i'('ll 11'-;1 ('uo;urillg \\'(' dOll'( IIV 10 '1'(':11(' II 
,!,/ ag;j i It 

seenObjectList. add( ido); 

111'1.11(' IhlUII~ll ohj!'cl Ii 11k,.., . ('II';llll1g I:'ilcli ph,p'!"l 

for (Entry<IDebugObject, IVariable> variableLink linklist ,entrySet()) { 
IDebugObject i = val'iableLink. getKey (); 
if (i 1= null && !seenObjectList.contains(i)) { 

1/ If \\,(,11;1\,('11'1 ;>('('11 Ibis OilJ('CI )'('1" o;e;ir,11 il
 
View3D. idoToObject3D, get( i). createSubObjects ();
 
seen 0 bjectLis t . add (ido ) ;
 

} 
Ii [Jr;m· lilll'~ flPl1i this OI!.l(,("cH) III (':Iill III it ',.., I hlldlell 

createLines (t his, i); 
} 

} 

Listing 9: Creating a forward Trace - Object3D's role 

We now just need to discuss the layout manager's construction of the traces.
 
This is a standard tree draWing proLJlern. What we perform iR BreAdth-First
:'t 

search of the tree, starting at the root node, calculating the required space of
 
each sub-tree. This is a single pass of the tree structure where we remember
 
seen nodes in order to handle backlinks and self-referential objects. This creates
 
a mapping of Object3D nodes, to their associated subtree size. We then begin
 
once again at the root, and knowing the size required for each sub-tree, allocate
 
the space accordingly on a level by level basis. In other words, we create a list
 
for each level of the tree, and then draw each level at a time. In order to deal
 
with forward traces, we look at the references from the respective object, and
 
generate the tree in the negative y-axis. In contrast, for the backlinks structure,
 
we look at objects that point to the respective objects, and create the tree in
 
the positive y-axis. The result of this trace drawing algorithm can be seen in
 
figure 6.
 

What this algorithm provides is a guarantee that all the objects will be drawn
 
correctly, and no overlapping, or ill-placement will occur. We know through our
 
subtree size calculations how much space each subtree reqnires, and it is the use
 
of this fact which allows us to draw our graph in a beautified and clcar manner.
 
We are able to position each nodc, with the advanced knowledge of the number
 

27 



of nodes we need to place below it. 

Figure 6: A look at forward and backward traces. 

4.6 User Interaction 

In order to make use of the various optional views our plug-in provides, we want 
to provide a simple way for the user to interact with the 3D environment. As we 
have seen in §4.1.3, we instantiate Java3D mouse rotate, mouse translate, mouse 
wheel zoom and keyboard navigation behaviours. This allows our users to move 
around the virtual world with ease. It should be noted that the rotation and 
translation methods have been created on the Object3D branch group node, 
and hence, physically move the objects in the 3D space as one whole. On the 
other hand, the zoom and keyboard navigation behaviours have been created 
on the view side of the scene graph, and hence, move the perspective of the 
user. It is this solution that best suits the needs of the user, providing a very 
intuitive way to move around the 3D universe. 

Having generated ways to manipulate the view of the virtual world, we must 
look at a way in which we can directly affect the underlying structure. The 
methods I provide are detailed in figure 7. However, in order to provide these 
methods we must discuss a few more Java3D requirements. Firstly, we have 
available to us a J ava3D picking class. Essentially, we subscribe and implement 
the View3D class as a mouse listener for the Java3D canvas. Then, when mouse 
events arrive, we can qnery the picking class to find out which 3D object lies at 
the current monse point on the canvas. We then create our menus accordingly. 

As we can see in our Eclipse, and further two close-up 3D environment 
screenshots in figure 7, menu creation depends on the state of the view. In 
other words, we separate the user from the idea that a forward or backward 

28
 



--
'Ii-.~ •• ~ 

Iii'.....~
I~. 

lwMl\ll!i.. 
-()ejeCl..."... 
t_Olljocf_ 

ShowUnes 

_\.0... 
RMIawSpKe 

Figure 7: The menu options available 

trace is simply another layout; the user can switch between the main overall 
view, and any trace, seamlessly. 

What I would also like to highlight from figure 7 is the small table to the right 
of the 3D view, in the Eclipse window. If a user selects to "show details", then 
this table emerges, showing all the information we have about the object. These 
include its name, its type, any variables it has, and any objects it references. 
These are aU extracted from the IDebugObjcrt getValue method. This extra 
information can provide the user with added debugging opportunity, as well as 
extensibility in the project as a whole. The JDT debugger offers the changing 
of live values, if our underlying framework can rope wit.h this, then our view 
can provide a simple way to change the values of variables in an object, on-the
fly. In fact, our table implementation is capable of exactly this, however, the 
underlying model currently in use doesn't allow for that to occur. 

4.7 Overall Design View 

Having discussed the working, and some of the interactions of the classes in
volved, along with the Java3D scene graph, it is sensible to provide graphical 
illustrations for both. The UML diagram represents the Java classes I have 
implemented, however, it simplifies the intermediary debug model framework, 
which I haven't created. This is shown in figure 8. The Java3D scene graph rep
resents the gmph structure I have generated, which is renderable by the Java3D 
renderer. It follows the rules and conventions outlined in §2, and is shown in 
figure 9. 

29 



'Tloq. 
c..., 
(1) 

C? 

~ 

C 
~ 
t-< ..., 
.g...,w (1)0 UJ 
(1) 

~ 
p:l 

"" o· 
::l 
0-, 

$ 
~ 
UJ 

~. 

Dotbug Wodel 

1
 

\1/ 1
 

UpdmH,ndltr 

Updlt,H"ndl4l(vlt0W3d : V1tIl'll30)
 
upd,lteC_bugIll401:1oeacdlibugTJltget: IDebu'llT ,IrOItt,ob}.okCholng44 : ~ ..p): wold
 

1 

1 0.'/1 

Vl...:JO 

VI_DO 
ore.ttp,rtConbol(pa..nt· Composite): void
 

In~: .... ld
 
c..,rhPopupW.nos(J: \1old
 

dctrolO: ...old 
o'tolt-5ctnt3D(): Br.ll"lohGroup
 
.IotlonPttform, t(t : MtionEw. h{) : void
 

l'l:AfVlw() : void
 
ctutt:Tr.lce(}: ¥'Old
 
o"!mNw(ldo : IDe:bugObje:et): .old
 
remo.ot(ldo : 1t>e:buOObje:ct) : void
 
mOllRCli Gktd(e . Wo\,nEY~"Q: .o.d
 
rhoUAEnt4Te«e : WOfolAEvtnQ: wid
 
mOlJllO:ibd(.lrgO: UouHEvtn1): void
 
movstPrMSe«. : ~olJSll'E..nf): .oid
 
mOUJ.Rtle.lS4l(e : WouseEY.n{). void
 

Htfoou<! : \1old
 

CIU1t.ringa.IIR dl~out 

Cluslorlnge...dL1you'() 
Crt I1.R......dLlstOtObj.o1() : void 
c,,,'oH.""o<tllor(oJd . Objoct30) : V. ctoCd 
updJt~IPotJtIorr(): .old 
getPc.Itf.n(oJd· Obj.c1:1D): V••IoGd 
iHeolte:Postttorr(~o1: Veo'ol3d.radlld: 6oublt.o.mifrom: lM.,r.,.tdLt:sr010bj.ots: LinktdUd): void 

getGroups(lnputUst: UnktdUsf): Unke:dU:s:1 

0 ..' 0 .. 1 
GridL6Y0trt 

GrldUyou() 
Oblo<130 or<emNtwPosi'tion(03d: ObJt0t3D): V.otot3d 

ObJeoOD(ido . IOtbuoObject.Yiftllll9D . Vie.aD) 
golPc.ltfor(03d ·Objo0130) V.cloCd 

ortlttObJec'Q: TOld 
upd6be.AtIPosition:1() : void 

Q4!t9rAnotiGroupO : BranohGtollp 0 ..' 0 ..1 

ulpd.Mhl(): TOld Sl••hdU}"otrt
c.loul6\tStep9IzeO: 'WOld 
o..foul6\.lmporUno:eS~: Yold SI.clotdlAyoU() 
o,.mD..uihQ: void ol• .neNewPosition(03d . ObjeC'DD): V.ctol3d 
showO.u1 b() : 'lI0 'Id gotPosmor(03d: Obj.c1:10)· v.olora" 
hfdeO.tI'h(); vol6 upd~.uPo:5lt1on:s(): ..-old 
diopl..,Obloc1lJnks(): void 

0 ..' 0 ..1 dts:pI..,.obJeo19.acti.JnirsQ . void 
cr. ri. 5ubObJ_o1!() : nld Tr._L8youtC
cnI!me..ctiJrWSubObJ_ot(): void 
highllghtC:ulTltntObjeot): void Tr.,u-,outCO 
remoY8HIghtloh'lO: ~Id ore:ateNewP~on(03d : Ol>j*aOO): Veotor3d 
creattUne:s(obJ,oDti : ObJtoUt>.lInkUst: 5*1): voId g.tp05ltlon{o3d : ObjecOD): Vtotor.34 
ofu1.Unu(objeo13D: Obj_oUD.ldo: ItitbugObjl3'ol): wold o.-tS in(ldo : IO ..bu 00 bjeet): Int 
"!move:Unt:::$() : .ofd updlteAUPosltlont() : void 
1lI!!moue:Ob)eottJnlI:(): Y1;Ild 0 ..' 0 ..1 
raplolCl-.AlIObjtotlQ. wold 
otl!'a1eCulTentTree(): 'Wold 8'ckT"e:Uyoutc 
oremCuMtht9.1ckUnkTreeO: .old 
sn-"lne:(): void e.cO<T,.. lAyoutCQ 

hI6.Unl:S(): void cue:.N....Posttion(03d : ObJ8lrl:3D) : VtotoGd 
getpCtSitJon(03d : ObJtct3D): V.otol3d 

D.." D.." g.tSln:(ido: IOebvgObjtcf) Int 

upddeAJIPositioh3(): 'tI'oid 

0 .. 1 0 .. 1 

R• ..e...dlAyotrt 

R.:lIrd<9.rsll!lduyo""J 
ofluteRoInkedL..i:stOfObj'totsQ. \fOld 
or...teNttA.Positior(03d: Obj_e13D). Vec1ol'3d 
upd4teAnpositio~ wid 
g.1PO$ltion(03d : Ob)00130): V.ol<>Cd 
are.l1:t"Posttlons(root: Veo1or3d.radlus; doubl•.c.lmt'rom : int.r.lnke:dUstOtObjeots: UnI<'edUsr): .aid 



~ 
cjq" 
c.., 
et> 
<0 

t--:J::r
et> 

'--' 
~ 
~ 
t:l 
(fJ 
(> 
et>::s 
et> 

o~W.... .g
::r-
Ul.,....., 
C 
(>.,... 
t:.., 
et> 

0-. .,... 
::r
et> 

::n 
::l 
~ 

0 " 
0.. 
et> 

9BG BranchGroup 

T~n,fo'mGmu, 
OBJECT30 

TREE o--J ,v,ew, ~1 ("v,,3D f-~ S,~eo3D I 
I ,
 

I ,
 
I ,
 

,.. ..... 
• -,---""----" 

Physical Body 

Virtual Universe 

Bounding leaf 

BackGround 

lishring 

" 

" 
~ 
~ 

I 



5 Testing 

We have already seen some screen shots of the working program, however, we 
provide two stringent tests for our program to ensure it works as intended, 
along with a test rig to fully analyse the program. In both test programs, I 
will run through the whole series of options available to the user, and ensure its 
correctness. However, I will also demonstrate its ability to visualise code, and 
hopefully provide valuable insights whilst debugging. 

5.1	 Simple Program - BFS and DFS using the Visitor Pat
tern 

This test program begins by creating an underlying tree structure. This tree 
structure is represented by Node objects, and the links between them. We 
construct a tree which has the following representation: 

Figure 10: The tree we want to perform BFS and DFS on 

Our test program begins by creating this structure, and then performs a 
DFS, followed by a BFS, both using the visitor design pattern. Within Eclipse, 
we set a break point after the last node has been generated, this provides us 
with a.n object state as in figure 11; 

Figure 11: The main view 

This displays the most important object, as the array holding all the Node 
instances. In order to see the representation of our underlying model, we simply 

32
 



request a forward trace on 'NodeO'. This trace is shown in figure 12. 

Fignre 12: Forward trace of the NodeO object 

Looking more closely at figure 12 uncovers a few interesting facts. Namely, 
we see the representation of the actual node is a Node object, pointing to a String 
object, the variable name, and the list conta.ining its pointers. Hence, figure 12, 
is a direct representation of the underlying tree from figure 10. Looking at the 
backwards trace of Nodc10 also provides us with what we would expect. This 
is shown in figure 13, and shows us that the array storing all Node instances 
points at Node10, and drawn the expected tree resulting from that. 

Figure 13: Backward trace of the NodelO object 

Now let us ima.gine there is a bug in the code, and we can't understand 
why the output from the DFS and BFS is incorrect. Given figure 14, and the 
representation shown, it's clear that our intended tree isn't being created. We 
can see that one of the nodes isn't attached properly in the tree construction 
method, namely because there are two nodes with no incoming links. Further 
investigation shows us that this is Node5. Low and behold, Node5 was never 
added to the edges of Node1 in this run. 

This kind of debugging is intuitive, and simple to do within this framework. 
If you have an intuitive understanding of what the underlying model in your 
program should look like, it is fairly straight forward to spot bugs like this in 

33 



Figure 14: A bug in the code 

small code samples. Assuming a larger program is in use, the user must delve a 
little deeper into the part of the graph which they suspect the bug to exist in. 
This is obviously heavily aided by the JDT debugger itself. However, this test 
still shows the usability of the code in a small program, and shows that the code 
can cope with the different types of back links and cross links that can occur in 
a memory graph. 

5.2	 Complex Program - Vector Space Document Retrieval 
Model 

In order to test the usability of our code on a more realistic example, we eval
uate its ability to cope with a much larger program. Namely, a document 
retrieval system which is based on the vector space model. This system gener
ates hundreds of objects, makes use of large data structures, and is generally 
quite computationally expensive. 

34 



The program looks to analyse an inverted file index for a set of 2,631 docu
ments. This index consists of each word, its document frequency, and a list of 
document, term frequency pairs for each document which this term appears in. 
This information is then used to retrieve relevant documents, given a query. 
In order to do this, the program makes use of various data structures. It 
uses mappings of terms onto document frequencies, terms onto lists of (doc
ument,frequency) pairs, and documents onto their document lengths. It also 
creates a ::iortcd set of document scores to provide a ranked set of results. These 
mappings are created from the inverted file index, and then used to create the 
scores for each document given a query. 

Given the program structure provided, let us see how our program deals 
with its visualisation. Firstly, we look at the initial creation of the maps, and 
how they are presented in the 3D space. This is shown in figure 15. Figure 
16, shows the state of our program once the data structures have been filled. 
Unfortunately, in filling these data structures, the underlying system seems to 
become overloaded. So much so, that it stops communicating with the update 
handler (outlined in §4.2). As such, it isn't possible to push the 3D world to 
its limit in this system. This is unfortunate, but we will see in §5.3 that our 
program can in fact cope with many more objects. 

The visualisations we can achieve initially show us our document retrieval 
system generating 17 objects (Figure 15). These objects consist of the instan
tiation of the vector space model itself, the maps we discussed and their com
ponents, and a set. Initially, all of these sets are empty. What we see is the 
minimal number of objects required in setting up these structures. 

Figure 15: Initialising the data structures. 

Figure 16 then shows us the structures as they begin to fill, including the 
relationship the vector space model component has with them. What we notice 
is that the InputStreamReader object used to read the inverted file index has its 
own space in the universe, concerned with reading the file. The data structures 
in our vector spa(:e model object then grow as more words are read and processed 
from the inverted file index. 

35 



Figure 16: Filling the structures with the data. (3375 objects) 

No. Of Objects Time to Update View Lines Creation s(object)-l 
17 0.051s 0.018s 0.003s 

730 0.28s 0.357s 0.000489s 
1066 0.255s 0.208s 0.000239s 
1975 0.868s 0.519s 0.000439s 
2026 0.94s 0.298s 0.00046s 
3051 2.117s 0.398s 0.00069s 
4250 4.634s 1.09s 0.00109s 
5527 8.798s 1.507s 0.00159s 

Table 1: Analysis of growth 

As discussed, this system can visualise around 5,000 objects before memory 
issues in the underlying system pose a problem. Timings for the growths can 
be seen in table 1. What we see is an expected growth regarding creating the 
visualisations, namely, that our system is not linear. 

Empirically, we have seen that our system is not linear, in fact, results 
would lead us to believe that the program is O(n2 

). Doubling the number of 
objects, roughly quadruples the time taken. Looking at our system, we see 
that each iteration results in a sort of the entire collection, namely at a cost 
of O(nlogn). This however is not our biggest computational task. In fact, our 
clustering algorithm, whilst iteratively removing a node from a cluster, and re
clustering, performs in the worst case n(n-l )/2 iterations. This in fact involves 
n 2 comparisons, as at each iteration we must look to see if the node has been 
seen before. Thus, if at each step we cluster into only two groups (the worst 
case), we only reduce the size of our search space by one at each step, this costs 
O(n(n -1)/2), which is equivalent to O(n2 ) and is the most complex algorithm 
in use. Hence, the main contributor is the clustering algorithm, but as we see 
from the timings, our system is still extremely usable. 

We now look at figures 17 and 18 to see how useful our program can be 

36 



in potential debugging, and aiding understanding of such a large program. As 
we have seen, figure 16, shows us how the system is separated into two overall 
sections. One for our vector space model, the other for the file reader. Delving 
deeper into the vector space model, we see in figure 17 that our vector space 
model object has references to six other objects. This indudes, four maps, 
one list, and one set. Exactly what we would expect here, given our program 
construction. As we can see, verification of this is extremely straight forward. 

From the same view, namely figure 17 we can also see that two of the maps 
seems to have a much higher importance that the rest. Figure 18 looks in 
more detail, telling us that the most predominant mapping is the mapping 
of documents to strings. Second to that is the mapping of terms onto lists 
of (document,frequency) pairs. These two mappings are what make up the 
majority of our 3D space, and as such, take up a lot of the memory in the running 
of the program. This information could be crucial to a designer, showing how 
the program operates, a.nd visualising the problem of potentially repeated data. 
In this case, it might be possible to combine information, and provide a more 
efficient map structure. 

Figure 17: The VSM Object 

Figure 18: Detailing the important maps 

37
 



5.3 Test Rig 

In order to have a sustained and thorough testing available through the creation 
of the program, we make use of a test rig. When the testing mode is switched 
on, through a flag in the source code, at each step of the update our system 
provides timings, and performs every operation available to the user. This means 
activating every menu option, and hence, testing each metbod in the program. 
The program is fairly straight forward, and timings can be seen in the previous 
section. Suffice to say that upon completion, the test rig runs through cleanly, 
and with no errors on all of our test programs. 

For completion and accuracy, table 2 shows us our object creation timings 
from the test rig. In order to do this we create dummy IDebugObject objects, 
each with a pseudorandom importance value, and they are all sent through to 
the system as new, at once. Therefore, this demonstrates the time taken to 
create the objects, calculate their position, and to display them. Figure 19 
shows us the view having created 20,000 objects in the 3D space. 

No. Of Objects Time to Create Objects s(object) ·1 

1 0.057s 0.057s 
10 0.063s 0.0063s 

100 0.094s 0.00094s 
1000 O.77s O.OOO77s 

10000 19.216s 0.0019s 
20000 85.152s 0.0043s 

Table 2: Test Rig Timings 

Figure 19: Displaying 20,000 unrelated objects. 

38 



6 Conclusions 

Having thoroughly tested my code I feel I can now draw some conclusions about 
the project as a whole. In order to do this effectively, I will look back to the 
requirements outlined in §3, and judge the success of my project on how well 
these criterion were met. 

Accuracy 
With the careful construction of the Java3D scene graph, and the separation 
of concerns used throughout the project, I feel accuracy should occur as a by
product. This project does well at allowing each class to be concentrated upon 
regardless of other implementation concerns, solely aiming to fulfil its task. 
Hence, any inaccuracies are likely to be picked up at the point in which they 
may occur. Our interaction with the underlying model is somewhat seamless, 
and along with the results of the testing phase, I feel we can be assured as to 
the accuracy achieved in reflecting the run-time disconnected memory graph we 
set out to create. 

Efficiency 
A~ we hav!:' seen in our larg~r test runs, t.he response of the initial generation 
of the scene-graph. no longer remains instant. However, this delay only occurs 
upon this initial gl:'neratioIl, and comes partly down to the Java3D renderer 
having to render so many 3D objects, but mainly due to our layout algorithm. 
Notably, if spl:'ed bE"comes a concern, we can switch to one of the other layout 
managers outlined in §4.5 1 and dramatically reduce complexity. Once rendered, 
the model behaves exquisitely however, and as such, I feel the efficiency con
Cf~rns w hieh were raised have been overcome. In most cases the program is 
instantaneous, and as programs become larger we only see a small increase in 
delay. 

Making use of efficient data structures within the program, and ensuring 
that nodes aren't revisited and recalculated unless nece~~ary, I feel this solution 
fairs extremely well in keeping track of the underlying memory graph. 

Usability 
As our efficiency requirement explains, this program is very responsive, but we 
also make sure it is intuitive for the end-user. We provide a mouse-based input, 
and a menu structure which adapts to the state of the program. Alongside 
the JDT debugger it'elf, this solution provides ease of use for both a debugger, 
and someone looking to visualise their program. Overall, I feel this program 
is a valuable addition to the already ext.remely user friendly Eclipse debugging 
perspective. 

Extensibility 
One of the best aspects of this program is its extensibilit.y. It. provides t.he frame
work for visualising any underlying object-orientated syst.em, given a model to 
draw the information from. This is an important factor in making this project 
portable to other systems. 

In addition to this, we create a. layout manager abst.raction which allows 
for added layout managers to be created, whilst abstracting away from the 

39 



intricacies of the underlying scene graph creation. This providps us with an 
easy way to implement new three-dimensional layout techniques if they become 
available. This method of coding is a valuable asset to any system. 

Integration 
Not much needs to be said here a."l the program sits perfectly inside of Eclipse. 
When debugging1 users have the option of opening a '3D View', which results in 
our model being created and executed inside the Eclipse window. This provides 
a method of using this 3D debugger and visualiser, side-by-side with the JDT 
debugger itself. 

Having seen that the code does in fact meet the original requirements laid out, 
it can be said with conHdence that the project has achieved what was intended. 
However, this is not to say that improvements cannot be made, and in §6.1, 
these changes will be discussed. Given the time allotted for this project, I am 
happy to say we have achieved something new. No program has ever set out 
to visualise and debug programs in this way, and I feel the end product is all. 
extremely usable one. I do feel there is room for improvement when compared to 
advanced 2D debuggers and visualisers, however integration of these algorithms 
has been made simple by careful thought of our design. We provide a usable 
platform from the beginnil1g 1 but also allow for future development of an exciting 
new aspect to program analysis and visualisation. 

6.1 Further Work 

Having completed this project, and received good results, it is still felt t.hat. 
there are areas in which more work can be done. Time constraints have not 
allowed this work to be carried out as yet. however it would he reeommended 
that the maximal improvements would be aehieved in the following areas. 

6.1.1 Calculating Differences Between Program States 

Zimmerman and Zeller discuss in their paper the idea of the greatest common 
subgraph [17]. This idea comes from the fact that a debugger may want to 
compare two program states, or runs: to see the differences. One such method 
for doing this, is in the construction of the greatest common subgraph. Thifi 
give~ U~ the opportunity to discover bugs, given a run that works correctly, 
3nd one which does not, the difference between the two program states would 
reveal the cause of the failure. Greatest common subgraph creation wonld be 
a .solution to this problem, and worthy addition to the framework we h<lvP(l 

already created 

6.1.2 On-the-f1y Updating/Editing of Variables 

The JDT debugger offers the ability t.o change valnes of variables in a live 
system [4J. As we saw in 34.61 we provide a table showing the va\ues of a given 
objed. Hence, it would be interesting to be able to update the values of a live 
:o;ystem via chauges here. This would simply move sOlIle of the JDT optionality, 
into the 3D universe view. Currently, our table implementation is extensi ble 

40
 



in this respect, however, the requirements of the underlying model must be 
updated to include this extra functionality. 

6.1.3 Animating Program Runs 

Another interesting aspect of Java3D is the ability to add animation \:l\. It would 
be interesting to have an automated visualiser: possibly more so for teaching 
purposes, which would step through a program, and animate its construction. 
This would simply involve line creation animation, and object cfeatiail, modifi
cation and deletion animation effects. Overall) I think this would provide a more 
interesting way to display visualisations in a step-by-step manner, not generat
ing new insight into the program, but increasing its accessibility and potential 
usability. 

7 Acknowledgements 

I would like to use this section to thank Professor Oege de Moor for his help in 
guiding me throughout this project, as well as Dr. Gavin Lowe for ensuring such 
good progress was made. I would also like to thank Luke Cartey for allowing 
use of his underlying debug model implementation in this project. 

References 

[1]	 Chris Aniszczyk and Pawel Leszek. Debugging with 
the eclipse platform. IBM Developer Networks Online 
http://www.ibm.com/developerworks/java/library/os-ecbug/, 2007. 

12J	 Thomas Ball and Stephen G. Eick. Visualizing program slices. In Visual 
Languages, pages 288-295, 1994. 

[3]	 Dennis J Bouvier. Getting started with the java3d api, 2002. 
http://java.suu.com/developeT/onliIlcTrainingl.iava3d/. 

[41	 David Boxer, Ashutosh Galande, and Thuc 
Si Mau Ho. The architecture of the eclipse jdt. 
https://netfiles.uiuc.edu/dboxer2/shared/cs527/ JDT%20Architecture.pdf, 
2004. 

[5]	 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual 
Web search engine. Computer Networ'ks and ISDN Systems, 30(1-7): 107
117,1998. 

161	 Michael Callaghan and Heiko Hirschmliller. 3-D visualisation of design 
patterns and java programs in computer science education. SIGCSE Bull., 
30(3)::l7-40, 1998. 

[7]	 Stepha.n Diehl, editor. Software Visualization, International Seminar 
Dagstuhl Castle. Ge17Twny, May 20-25, 2001, Revised Lectu1'es, volume 
2269 of Lecture Notes in Computer Science. Springer, 2002. 

41 



8 

18]	 Larry J. French. An interactive graphical debugging system. In DAC '70: 
Proceedings of the 7th workshop on Design automation, pages 271-273, New 
York, NY, USA, 1970. ACM. 

19]	 David R. Hanson and Jeffrey L. Koru. A simple and extensible graphical 
debugger. In Winter 1997 USENIX Conference, pages 173-184, 1997. 

[10]	 Zellig Harris. Distributional structure. Word, 10(2/3):146-162, 1954. 

[11] Claire Knight and Malcolm Munroe. Visualizing software - a key research 
area. In ICSM '99: Proceedings of the IEEE International Conference 
on Software Maintenance, page 437, Washington, DC, USA, 1999. IEEE 
Computer Society. 

[12]	 J. Maletic,.I. Leigh, A. Marcus, and G. Dunlap. Visualizing object oriented 
software in virtual reality. In Proceedings of International Workshop on 
Program Comprehension (IWPC01), pages 26-35, 2001. 

[13]	 Dave Springgay. Creating an eclipse view. 
http://www.eclipse.org/ articles/viewArticle/ViewArticle2.html, 2001. 

[14]	 R Stallman and R Pesch. Debugging with GDB, the GNU source-level 
debugger. The Pree Software Fondation, Inc, (4), 1993. 

[15J	 Frank Tip. A survey of program slicing techniques. Journal of programming 
languages, :3:121-189, 1995. 

[161	 Andreas Zeller and Dorothea Lutkehaus. DDD - a free graphical front-end 
for UNIX debuggers. SIGPLAN Notices, 31(1):2227, 1996. 

[171	 Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs. In 
SoftWa1"€ Visualization, pages 191-204, 2001. 

Appendix 
The following pages will contain the code for the majority of the methods in my 
program, restricted only by the page limit imposed. 

42 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

('. 
... The UpdateHandler Class: 
• This class will be passed on to the underlying debug intelface, and used in
 
... order to inform our model of underlying changes. We essentially expect this
 
• method to be notified of all new, changed and deleted objects. The job of 
• this class is to then pass this information to the View3D object provided. 
• 
• @author Darius Bradbury. 
·f 

public class UpdateHand\er implements DebugModelContainerListener { 

View3D view3D; 

('. 
• Assigns the local view3D object, and instantiates the UpdateHandler.
• 
• @param view3d
• the associated View3D object. 
·f 

public UpdateHandler(View3D view3d) {
 

view3D = view3d;
 

)
 

('. 
• This method is called by the intermediary framework. It is used to update 
..... the 3D universe, passing on and new/changed/deleted objects to the View3D 

• object. 
• 
• A call to this method signifies that the underlying state of the program 
• has changed. 
• 
• @param debugTarget 
• the underlying debug target. 
• @param objectsChanged 
• A mapping of change type (new/changed/deleted) to 
• IDebugObjects. 
·f 

public void updateDebugModel(lDebugTarget debugTarget,
 
Map<DebugChangeType, List<IDebugObject» objeetsChanged) {
 

42 I" 
43 • Reset all objects state.
44 • 
45 • We must ensure that each object is considered unchanged, unless told 
46 • otherwise. This updates the fact that we have entered a new system 
47 • state. 
48 ·f 
49 for (Object3D 03d : View3D.idoToObject3D.values()) { 

50 03d.state = "unchanged"; 
51 
52 
53 // Create iterator variable used to iterate through the objects. 
54 Iterator<IDebugObject> iterator; 
55 
56 // Check for new objects in the system. 
57 if (objeetsChanged.contai nsKey( DebugChangeType .CREATE Dil ( 

58 
59 // Set our iterator to the object which are NEW. 
60 iterator = objectsChanged.get(DebugChangeType .CREATED). iteratorO; 
61 
62 //Iterate through, sending each lDebugObject to the view3D object. 
63 while (iterator.hasNext()) { 
64 IDebugObject itemp = iterator,nextO; 
65 view3D.createNew(itemp); 
66 //Set the state of these Object3D objects to NEW. 
67 View3D.idoToObject3D.get(itemp).state = "new"; 
68 } 

69 } 
70 
71 I" 
72 * Iterate through the changed objects, no need to send them through to 
73 * the View3D object however, just set their state as CHANGED. 
74 
75 ·f 
76 if (objeetsChanged.containsKey(DebugChangeType.CHANGED)) { 

77 iterator = objeasChanged.get(DebugChangeType.CHANGED).iteratorO; 
78 
79 while (iterator.hasNext()) { 

80 lDebugObject itemp '" iterator,nextO; 
81 View3D.idoToObject3D.get(itemp).state = "changed"; 
82 } 



83
 
84
 
85 r
 
86 .. Iterate through all the deleted IDebugObjeets, notify view3D of their
 

87 * removal.
 
88 'j
 
89 if (objeetsChanged.containsKey(De bugChangeType.DELETED)) {
 
90
 
91 iterator = objeetsChanged .get(De bugChangeType.DELETED).iterator();
 

92 while (iterator.hasNext()) {
 

93 IDebugObject itemp = iterator.next();
 
94 view3D.remove(itemp);
 
95 )
 
96 )
 

97
 
98 / / Having processed all objects, finalise view:
 
99
 

100 / / First extract all the Object3D objects still in our system. 

101 / / We do this by accessing our static mapping of lDebugObjects to 

102 j j Object3Ds. 

103 Collection<Objeet3D> totalUstOfObjeets = View3D,idoToObject3D.values(); 

104 
105 / / If positioning depends on rank, update the rank and positions to 

106 II accommodate these changes. 
107 Object30.layautManager.updateAIIPositions{); 
108 
109 r 
110 .. We then perform an update on each object. We do th',s at such at the 
111 .. end in case the position of the objects depends on other objects. As 

112 * such, we must wait until all the objects have been sent through to 

113 * the view. Note - that the object isn't created until this step. 

114 
115 'j 
116 System.out.println("[View] Updating objects."); 
117 for (Object3D o3d : totalListOfObjeets) { 

118 o3d.updateO; 

119 ) 
120 II Recreate lines if necessary. 
121 for (Object3D o3d : totalListOfObjects) { 
122 if (o3d.linesVisible) { 
123 o3d.hideLinesO; 

124 03d.showLines(); 
125 }else if (View3D.aIfUnesVisible) { 
126 03d.showLinesO; 
127 ) 
128 ) 

129 I I If we were in a sub-view, we re-create that same view. 

130 if (view3D.justSubObjects) { 
131 
132 II We check that the root node of this sub-view hasn't been deleted. 

133 if (View3D.idoToObjeet3D 

134 .containsValue(v·lew3D.currentRightClickedNode)) { 

135 view3D.createTrace(); 
136 ) else { 

137 II Object we were tracing no longer EXISTS. 
138 II return to full graph. 

139 view3D.justSubObjects = false; 
140 } 
141 ) 

142 II Print to console number of objects generated. 
143 System.out.println("[VIEW] There exists" + View3D.idoToObject3D.s;zeO 

144 +" visual objects in the overall graph."); 
145 } 
146 } 
147 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

IU 
• The Object3D Class: 
• This class will hold objects definitions, with their 3D 
• representations. It acts as a wrapper for the IDebugObjects from the 
* underlying model, and provides methods for maintaining its 3D representation. 

' 
• @author Darius Bradbury. 

'/ 

public class Object3D { 

public static LayoutManager3D layautManager; II layout manager in use. 
public lDebugObject ida; //The underlying IDebugObject. 
private TransformGroup tg; II This objects TransformGroup
 
private BranchGroup bg; II This objects BranchGroup.
 
I I The sub-BranchGroup for the visual object representing the name of the
 
// object. 
private BranchGroup bgName;
 
private View3D view3D; II The view3D object.
 
public Veetor3d v3d; II Vector representing object's position.
 
public String name; II Object's name.
 
public boolean detailsVisible = false; II name on or off flag.
 
public boolean linesVisible = false; II trace lines on or off flag.
 
I I Collection of created lines.
 
private LinkedList<BranchGroup> linesList = new LinkedList<BranchGroup>O;
 
II Appearance NodeComponent for this visual object.
 
private Appearance appearance;
 
IITree layout managerforforward traces.
 
public static TreeLayoutC treeLayaut;
 
I I Tree layout for backward traces.
 
public static BackTreeLayoutC backTreeLayaut;
 
public float objectSi,e; // Si,e of the object. 
I I Definitions forthe general view layout manager type.
 
static final int gridtype = 0;
 
static final int stacktype = 1;
 
static final int rankbased = 2;
 
static final int clusterbased = 3;
 
I I Setting the layout manager type.
 
static int layautManagerType = dusterbased;
 
II Seen list for BFS tree generation.
 
public static LinkedList<IDebugObjeet> seenObjectList =
 

42 new LinkedList<IDebugObject>()j
 
43 public String state = "unchanged"; II Current state.
 
44
 
45 /"
 
46 • Instantiates an Object3D object, attaches the associated IDebugObject,
 
47 • and links to the View3D controller class.
 ,48 
49 .. @param ido

50 • The tDebugObject this class provides a wrapper for. 
51 • @param view3D
52 • The associated View3D controller class. 
53 '/ 
54 public Object3D(lDebugObject ido, View3D view3D) { 
55 this.ido = ido; 
56 this.view3D = view3D; 
57 I I Create new TransformGroup node for this Object. 
58 tg = new TransformGroup{); 
59 II Add it to the view3D map to allow picking. 
60 view3D.tgToObject3D.put(tg, this); 
61 
62 II Create the BranchGroup node, and attach the TransformGroup node. 
63 bg = new BranchGroupO; 
64 bg.setCapability(BranchGroupALLOW_DETACH); 
65 bg.addChild(tg); 
66 I I Create a new Vector3D to hold this objects position. 
67 v3d =new Vector3dO; 
68 I I Set the name 
69 name = ido.getValue().toStringO; 
70 I I Create the associated layoutManager on first run. 
71 if (fayautManager == null) { 
72 switch (layoutManogerType) { 
73 case grMtype: 
74 layoutManager = new Gridlayout(); 
75 break; 
76 case stacktype: 
77 layoutMonager = new StackedLayout(); 
78 break; 
79 case ronkbased: 
80 layautManager = new RankBasedLayoutO; 
81 break; 
82 case clusterbased: 



83 layoutManager =new ClusteringBasedLayoutO;
 
84 break;
 
85 }
 
86 }
 
87 }
 

88
 
89 ;"
 
90 • ThiS method creates the 3D sphere. It uses the current state of the
 

91 • global Object3D parameters for position, size, etc.. to do this.
 

92 ';
 
93 private void createObjectO {
 
94
 
95 II Create the Sphere and set associated capabilities.
 

96 Sphere newObj = new Sphere(objectSize);
 
97 newObj.seIPickable(true);
 
98 newObj.setName(name);
 
99 newObj.seICapabilily(5hape3D.ALLOW_APPEARANCE_WRITE);
 

100 newObj.seICapability(5hape3D.ALLOW_APPEARANCE_READ); 
101 newObj.seICapability(Group.ALLO W_CHILOREN_ WRITE); 

102 newObj.seICapability(Primilive.ENABLE_APPEARANCCMODIFV); 
103
 
104 II Remove the current TransformGroup, create a new one, and attach.
 

105 vlew3D.tgToObject3D.remove(tg);
 

106 tg = new TransformGroup(};
 
107 view3D.lgToObject3D.pul(lg.lhis); 
108 
109 1/ Get appearance and set capabilities.
 

110 appearance = newObj.getAppearance();
 
111 appearance.setCapability(Appearance.ALLOW_MATfRIAL_ WRfTE);
 
112
 
113 tg.seICapabilily(TranslormGroup.ALLOW_TRANSFORM_READ);
 

114 Ig.seICapabilily(TranslormGroup.ALLOW_TRAN5FORM_ WRITE);
 

115 Ig.seICapabilily(Node.ENABLCPICK_REPORTlNG);
 

116 Ig.seICapabilily(BranchGroupALLOW_DETACH);
 
117 Ig.seICapabiiily(Group.ALLOW_CHILDREN_EXfEND);
 

118 Ig.selCapabil ily(Group.ALLOW_CHILDREN_WRITE);
 

119 Ig.seICapabilily(Shape3D.ALLOW_APPEARANCE_ WRITE);
 

120
 
121 II Create new Transform.
 
122 Transform3D transform =new Transform3D();
 

123 II Set the Transform to move to the Objects current position.
 

124 transform.set(v3d); 

125 II Perform this translation. 

126 tg.setTransform(tra nsform); 
127 II Place the sphere in place. 

128 Ig.addChild(newObj); 
129 
130 II Create new BranchGroup. 

131 bg = new BranchGroup(); 

132 bg.seICapabilily(BranchGroupALLOW_DETACH); 
133 II Add newly created TranformGroup. 

134 bg.addChild(lg); 
135 bg.setName(name); 
136 
137 II Set Colour depending on objects state. 

138 if (stale.equals("new")) { 
139 Color3f ambientColor = new Color3f(O.0f, a.6f, a.Of); 
140 Color3f emissiveColor = new Color3f(0f, Of, Of); 
141 Color31 diffuseColor = new Color31(0.51, 0.51, 0.51); 
142 Color31 specularColor = new Color31(0.71, 0.71, 0.71); 
143 float shininess = 64; 

144 Materjal mat = new Material(ambientColor, emissiveColor, 
145 diffuseColor, specularColor, shininess); 

146 II Set material, sets colour and lighting attributes. 

147 appeara nce.set Material( mat); 
148 ) else If (slale.equals("changed")) { 
149 Color31 ambienlColor = new Color31(1I, 0041, Of); 
150 Color3f emissiveColor = new Color3f(af, Of, Of); 
151 Color31 diffuseColor = new Color31(0.51, 0.51, 0.51); 
152 Color31 specularColor = new Color31(0.71, 0.71, 0.71); 
153 float shininess = 64; 

154 Material mat = new Material(ambientColor, emissiveColor, 

155 diffuseColor, specularColor, shininess); 

156 appeara nce.set Materia I(mat); 

157 }else { 
158 Color31 ambienlColor = new Color31(0.71, 0.71, 0.71); 
159 Color3f emissiveColor = new Color3f(O.0f, a.Of, a.Of); 

160 Color31 diffuseColor = new Color31(0.71, 0.71, 0.71); 
161 Color31 specularColor = new Color31(0.91, 0.91, 0.91); 
162 Material mat = new Material(ambientColor, emissiveColor, 

163 diffuseColor, specularColor, 64.f); 

164 mat.setColorTarget(Material.5PECULAR); 



165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 

a ppeara nce.setMate rial(mat); 
) 

) 

/" 
• This method returns this Object3Ds root node, in the Java3D scene graph. , 
.. @returnThe root BranchGroup. 

'/ 
public BranchGroup getBranchGroup() { 

return bg; 

/" 
.. This method is called once the system is stable, and is expected to 
.. update the state variables of the Object3D instance, thus alloWing the 
.. createObject() method to create a correctly positioned and coloured 
• object. We also maintain the Object3D's name object. 

'/ 
public void update(j { 

/ / Remove currently stored BranchGroup from overall map. 
view3D.mainTransformGroup.removeChild{bg); 

/ / Remove current TransformGroup node from our BranchGroup. 
bg.removeChild(tg); 

/ / Get current Object position from the Layout Manager. 
Vector3d pos == loyoutManoger.getPosition(this); 
II Set our stored position to match this. 
v3d .setX( pos.getX(j); 

v3d .setY(pos.getY()); 

v3d.setZ!pos.getZ(j); 

II Calculate size.
 
/ / calculateStepSlZell,
 

ca IculatelmportanceSize(};
 

II Now all the variables have been set, create the visual object.
 
createObject(j;
 

II Add newly created BranchGroup to the overall mapping.
 
view3D.mainTransformGroup.addChild(bg);
 
II If details had been created for this object, create them again.
 
if (detailsVisible) {
 

206 tg.removeChildlbgName); 
207 createDetails(); 
208 ) 
209 ) 
210 
211 /"
212 '" Method used to calculate pure step size. Whereby, as objects get less and 
213 '" less important, their size is halved. This was originally used in the 
214 '" divide and resize algorithm. However, we now make use of the importance 
215 '" size metric.
 
216 '/
 
217 public void calculateStepSize() {
 
218 
219 double rank = 1; 
220 linkedlist<Object30> II = layoutManager30.currentRanking; 
221 boolean stillSearching = true; 
222 
223 for (Object3D rankedObject ; II) { 

224 if (rankedObject.equals(this)) ( 

225 stillSearching == false; 
226 ) else if (still5earching) { 

227 rank++; 
228 ) 
229 } 
230 objectSize = 10; 
231 while (rank> 1) { 

232 objectSize = objectSize I 2; 
233 if (rank <= 7) { 

234 rank = 0; 
235 ) else { 

236 rank == rank IS; 
237 ) 
238 ) 

239 ) 
240 
241 /"
242 '" This method calculates and sets the object size based on its importance 
243 '" relative to the importance of all the other objects in the system. 
244 '/
245 public void calculatelmportanceSize{) { 
246 



247 / / Get ordered list of ranked objects from layout Manager. 

248 Linkedlist<Object30> II; 
249 II = LayoutManager3D.currentRanking; 
250 
251 / / Take top scoring object score. 
252 double upperBound = Il.getFirst().ido.getPageRank(); 
253 / / Get score for this object. 
254 double importanceScore = ido.getPageRankO; 
255 / / Calculate ratio 
256 double ratio = importanceScore / upperBound; 
257 / / Biggest object = size 10, every other object a ratio of that. 
258 / / The range of object sizes is 0.5-10. 
259 objectSize = (float) ((9.5 • ratio) + 0.5); 

260 ) 

261 
262 ;.. 
263 • This method generates a BranchGroup node containing the visual object 
264 • representing the name of this Objeet3D. It then adds it to the Object3D's 
265 • own BranchGroup node, and hence, the virtual world. 
266 .; 
267 public void createDetails() ( 

268 
269 / / Create Font object 
270 / / Size of font based on size of object. 
271 Font f = new Font("calibri", Font.BOLD, 

272 (int) ((objectsize • 2) (10) + 1); 

273 / / Create Font E:drusion, used to turn 20 font, into 3D object. 
274 FontExtrusion fe = new FontExtrusion{); 
275 
276 / / Create 3D Font object. 
277 Font3D 13d = new Font3D(I, Ie); 
278 
279 / / Set position at edge of visual object. 
280 Point3f point3f = new Point3f(0, 0, objectSize); 
281 / / Generate 3D Text object. 
282 Text3D text = new Text3D(f3d, name, point3f); 
283 text.setAlignment(Text3D.ALlGN_CENTER); 

284 Shape3D textShape = new Shape3DO; 

285 textShape.setGeometry(text); 
286 
287 / / Set colour and response to light of the Text Object. 

288 Color3f ambientColor = new Color3f(0f, Of, Of);
 
289 Color3f emissiveColor = new Color3f(0.0f, O.Of, O.Of);
 
290 Color31 diffuseColor = new Color31(0.0I, 0.01, 0.0f);
 
291 Color3f specularColor = new Color3f{O.Of, O.Of, 0.0f);
 
292 Material mat = new Material(ambientColor, emissiveColor, diffuseColor,
 
293 specularColor, 64.f);
 
294 Appearance textAppearance = new Appearance();
 
295 textAppeara nce.setMateria l(mat) ;
 
296 textShape.setAppea ra nce(textAppearance);
 
297
 
298 / / Create BranchGroup to govern this text object.
 
299 bgName = new BranchGroup();
 
300 bgName.setCapability(BranchGroupALLOW_DETACH);
 
301 bgName.addChild(textShape);
 
302
 
303 / / Add our Text Object to this Object3D's TranformGroup.
 
304 tg. addChild( bgNa me);
 
305 }
 
306
 
307 ;.. 
308 • Method to show details of this Object3D, namely, show its name. 
309 .; 
310 public void showDetails() ( 
311 if (ldetailsVisible) { 

312 createDetails(); 
313 detailsVisible = true; 
314 ) 
315 } 
316 
317 r' 
318 • Method to hide the details of this Object3D. 
319 '; 
320 public void hideDetailsO { 
321 il (detailsVisible) { 
322 tg.removeChild(bgName); 
323 detailsVisible = false; 
324 ) 
325 } 
326 

;..327 
328 * This method performs a depth-fIrst-iteration through the tree of forward 



329 • links, creating each object on the way_ 

330 '/
 
331 public void displayObjectlinksl) {
 
332
 
333 II Clear current seen object list, used to avoid repeat visiting nodes. 
334 seenOb/eetUst.c1earl); 
335 erealeSubObjeclsl); 
336 view3D.justSubObjects = true; 
337 view3D.traceDireetion = 0; 
338 
339 
340 /" 
341 • This method perrorms a Depth-First iteration of the backward Jinks of 
342 • this node, generating each object as it goes. 
343 '/
 
344 public void displayObjectBaeklinksl) {
 
345
 
346 II Clear current seen object list, used to avoid repeat visiting nodes. 
347 seenObjeetList.c1earl); 
348 erealeBaeklinkSubObjects(); 
349 view3D.justSubObjeets::< true;
 
350 view3D.traceDireetion = 1;
 
351
 
352
 
353 /"
 
354 • This method generates this Object3D instance, then calls the relevant
 
355 • creation method in each of the Object3D's it has forward links to. In
 
356 • other words, it generates a forward trace.
 

357 '/
 
358 private void erealeSubObjects() (
 
359
 
360 II Every child removed when object right-clicked. 
361 II We just add correct objects. 
362 
363 II Remove any lines if they are currently on display.
 
364 if (linesVisible) {
 
365 removelinesl);
 
366 }
 
367 II Remove the TransformGroup for this Object3D. 
368 bg.removeChild(lg); 
369 

370 II Get position from the tree layout manager. 
371 Veetor3d pos = treeLoyout.getPosition(this); 
372 v3d .se!X( pos.geIXI)); 
373 v3d .selY(pos.gelY()); 
374 v3d .sell( pos.gell()); 
375 
376 II Create object, now based on its trace position. 
377 erealeObjectl); 
378 
379 II Add newly updated BranchGroup to the mapping. 
380 view3D.mainTransformGroup.addChild(bg); 
381 II Restore details if they were visible. 
382 if (delailsVisible) { 
383 Ig.removeChild(bgName); 
384 createDetails(); 
385 } 
386 
387 II Create local map variable for this Object3D. 
388 Map<lDebugObjeet, rVariable> linklist = null; 
389 
390 II We ensure the ido IS not null, however, if it is we throw an 
391 II exception. 
392 try { 
393 linklist::< ido.objeetlinks(); 
394 }catch (NulllinkExceplion e) { 
395 e. pri ntStackTrace{); 
396 } 
397 
398 II We add this ido to our seen list, ensunng we don't try to create it 
399 II again. 
400 seenObjectList.add{ido) ; 
401 
402 II Iterate through object links, creating each object. 
403 for (Entry<IDebugObject, IVariable> variableLink: linklisLentrySet{)) { 
404 IDebugObject i = variableLink.getKeyO; 
405 if (i != null && !seenObjectList.contains(i)) { 
406 II If we haven't seen thiS object yet, search it. 
407 View3DJdoToObject30.gel(i).crealeSubObjects(); 
408 seenObjectList.add(ido); 
409 } 
410 II Draw lines from this Object3D to each of it's children. 



411 createLines(this, i); 
412 ) 
413 } 
414 
415 /"
416 • This method creates a backward trace, performing a depth~first iteration 
417 • of the backward links of this object and it's associated IOebugObject. 
418 '/ 
419 private void createBackLinkSubObjects() { 
420 try ( 
421 / / Every child removed when object right-clicked. 

422 / / Don't need to worry about that, just add correct objects. 
423 
424 if (linesVisible) { 

425 removeLinesO; 

426 ) 

427 
428 bg.removeChild(tg); 
429 
430 Vector3d pas = backTreeLayout.getPosition(this); 
431 v3d.setX( pos.getXI)); 
432 v3d.setY(pos.getYIJ); 
433 v3d.setZ( pos.getZ()); 

434 
435 createObjectl); 
436 view3D.mainTransformGroup.addChild(bg); 

437 if (detailsVisible) ( 

438 tg.removeChild(bgName); 

439 createOetails(); 
440 } 
441 
442 Map<IOebugObject, IVariable> linklist; 
443 
444 linklist = ido.backUnksO; 
445 seenObjectUst.add(ido); 

446 
447 / / Iterate through object links, creating each object. 

448 for (Entrv<IDebugObject, IVariable> variableUnk: Iinklist 
449 .entry5et()) { 
450 IDebugObject j = variablelink.getKeyO; 

451 if (i != null && lseenObjeetList.contains(i)) ( 

452 View3DJdoToObject3D.get(i).createBackLink5ubObjectsl); 
453 5eenObjectLi5t.add(i) ; 

454 } 
455 II Create the lines from this object to each of its children. 
456 createUnes(this, i); 
457 ) 
458
 
459 } catch (NullLinkException e) {
 
460 throw new RuntimeException(e); 
461 } 
462 } 
463 
464 /"
465 ,. This method changes the colour of the Objeet3D's sphere to be red. We use 
466 ,. this method to highlight the root node in a trace. 
467 '/ 
468 public void highiightCurrentObjectl) ( 
469 Color31 ambientColor = new Color31(0.331, 0, OJ; 
470 Color3f emissiveColor = new Color3f(O, 0, 0); 
471 Color31 diffuseColor = new Color31(0.51, 0.51,0.51); 
472 Color31 specularColor = new Color31(0.71, 0.71, 0.71); 
473 float shininess = 54; 
474 Material mat = new Material(ambientColor, emissiveColor, diffuseColor, 
475 specularColor, shininess); 
476 appearance .setMateriaI( mat); 
477 
478 
479 /"
480 ,. This method removes any highlight that had been imposed. 
481 '/
482 public void removeHighlight() { 
483 
484 Color3f emissiveColor = new Color3f(O.0f, O.Of, O.Of); 
485 Color31 ambientColor = new Color31(0.1I, 0.11, 0.11); 
486 Color31 diffuseColor = new Color31(0.71, 0.71,0.71); 
487 Color31 specularColor = new Color31(0.91, 0.91, 0.91); 
488 Material mat = new Material(ambientColor, emissiveColor, diffuseColor, 
489 specularColor, 54.f); 
490 mat.setColorTarget(Material.SPECULAR); 
491 appeara nce.setMaterial( mat); 
492 } 



493
 
494 /"
 
495 • This method generates lines between the given Object3D and list of
 

496 • lDebugObjects, in the 30 world.
 ,497 
498 • @param object3D ,499 The source object. Where the lines must come from. 

500 • @param linklist,501 The target objects. Where the lines are going to.
 

502 '/
 
503 private void createUnes(Object3D object3D, Set<IDebugObjeet> linklist) {
 

504
 
505 for (IDebugObject ido: linklist) {
 
506 / / We must check objects don't have links to themselves.
 

507 II Otherwise we try to create lines with null transforms.
 
508 if (!objeet3D.equals(View3DJdoToObjeet3D.get(ido))) {
 
509 createUnes(object3D, idol;
 
510 }
 

511 }
 
512 }
 

513
 
514 /"
 
515 * This method generates a single line, from the given Objeet3D to the
 

516 • IDebugObject given. This involves finding the position of both in the 3D
 

517 • universe, and then generating a directed line representing the link
 
518 • between them.
 ,519 
520 • @param object30,521 The source node.
 

522 .. @param ido 

523 , 
The target node.
 

524 '/
 
525 private void createLines(Object3D object3D, IDebugObject idol {
 

526
 
527 I I Create appearance for the lines.
 

528 Appearance app = new AppearanceO;
 

529 ColoringAttributes ca = new ColoringAttributes(
 

530 new Color31(43, 173, 43), CoioringAtlributes.SHADEJLAT);
 
531
 
532 I I Create point array to contain start and end position of line.
 

533 Point3f[] linePoints = new Point3f[2];
 

534 
535 I' 
536 .. Object clicked on Position, relative to this object ie. Current 

537 .. Position! 

538 '/ 
539 linePoints[O] = new Point31(0, 0, 0); 
540 /' 
541 .. Object linked to Position, relative to this object ie. Linked to 

542 .. Object vector, minus current object vector. 

543 '/
544 float destx = ((float) View3DJdoToObjeet3D.get(ido).v3d.getX()} 
545 - (float) v3d.getX(); 
546 float desty = ((float) View3D.idoToObjeet3D.get(ido).v3d.getY()} 
547 - (float) v3d.getY(); 
548 float destz = ((float) View3DJdoToDbject3D.get(ido}.v3d.getZ()} 
549 - (float) v3d.getZ(); 
550 linePoints[l] = new Point3f(destx, desty, destz); 
551 
552 I I Create line based on positions. 

553 LineArray HneArray = new LineArray(2, GeometryArray.COORDINATESJ; 
554 IineArray.setCoordinates(O, IinePoints); 

555 
556 app.setColoringAttributes(cal; 

557 
558 Shape3D lines = new Shape3D(lineArray, app); 
559 
560 I I Create BranchGroup to Govern this line. 

561 BranchGroup bgtemp = new BranchGroup(); 

562 bgtemp.setcapability(BranchGroupAlLOW_DETACH); 
563 bgtemp.addChild(lines); 
564 
565 /' 
566 .. As line is directed, we must create an arrowhead. To do this we use a 

567 .. Cone object. 

568 '/ 
569 
570 II Cone size must be proportional to distance apart of objects. 

571 Vector3f lineVector = new Vector3f(destx, desty, destz); 
572 float length = lineVector.lengthO; 
573 float coneLength = length I 10; 
574 I I Set a cone size limit1 



575 il (coneLength > 5) { 
576 conelength = 5; 
577 } 
578 / / Create cone. 
579 Cone arrow = new Cone(coneLength / S, conelength, object3D.appearance); 

580 
581 / / Create TransformGroup to correctly position cone. 
582 TransformGroup tgArrow = new TransformGroupO; 
583 Transform3D t3dArrow = newTransform3DO; 
584 
585 / / Vector we need to translate cone by. 

586 Vector3f vArrow = new Vector3f(destx, desty, destz); 
587 
588 II Make sure the two objects are in fact not in the same place! 

589 II (vArrow.lengthO == 0) { 
590 System.out.println("[VIEWj vArrow.lengthO == OJ"); 
591 ) else ( 

592 / / Scale such that translation moves to edge of object, 

593 / / not centroid. 

594 vArrow.scale(((vArrow.lengthll 

595 - View3D.idoToObject3D.get(ido).objectSize) 

596 - coneLength / 2) 
597 / vArrow.lengthO); 
598 
599 / / Calculating rotational properties. 
600 
601 Vector3f objectTo = new Vector3f(destx, desty, destz); 
602 / / Angle of rotation 
603 float angle = (new Vector3f(0, 1, O)).dot(objectTo); 

604 angle = angle / objectTo.length(); 
605 angle = (f1oot) java.lang.Math.ocos(angle); 
606 
607 / / Axis of rotation 
608 Vector3f direction = new Vector3fO; 
609 Vector31 yAxis = new Vector3f(0, 1, 0); 
610 objectTo. normalize(); 

611 direction.cross(yAxis,objectTo); 
612 if ((int) java.lang.Math.toDegreeslangle) == 180) { 
613 II Dealing with perpendicular issue with 
614 //10.1,0) and (0,1,0)! 
615 direction = new Vector3f(l, 0, 0); 

616 
617 
618 /1 Set rotation first. 

619 t3dArrow.setRotation(new AxisAngle4d(direction.getX(), direction 
620 .getYO, direction.getZO, angle)); 
621 / / Then set translation. 
622 t3dArrow. setTra nslation{vArrow); 
623 / / Then perform transform as a whole. 
624 tgArrow.setTra nsform(t3dArrow); 

625 
626 / / (reate BranchGroup for the cone, and add just created 
627 / / TransformGroup 
628 // to it. 
629 8ranchGroup bgArrow = new BranchGroupO; 
630 tgArrow.addChild(orrow); 
631 bgArrow.addChild(tgArrow); 
632 
633 / / Add the cone to the BranchGroup governing the lines. 
634 bgtemp.addChild(bgArrow); 
635 
636 / / Add this whole BranchGroup to the Object3D's TransformGroup node. 
637 tg.addChildlbgtemp); 
638 / / Maintain a list of all the line BranchGroups for easy removal. 
639 Ii nesList. add( bgtemp); 
640 } 

641 } 
642 
643 /" 
644 • Making use of the maintained visible lines list, this method removes all 
645 • lines in the system from the main TranformGroup node. 
646 '/ 
647 public void removelinesO { 
648 
649 for (BranchGroup b : lineslist) { 
650 tg.removeChild(b); 
651 ) 
652 lineslist.dear(); 
653 
654 
655 /" 
656 • This method removes the lines for all the Object3D's in a trace. 



657 '/ 
658 public void removeObjectLinks() { 

659 for (IDebugObject i : seenObjectUst) { 

660 if (View3DJdaTaObject3D.containsKey(i)) ( 

661 View3D.idaTaObject3D.get(i).removeLines(); 

662 } else ( 
663 / / We know this object has already been removed since the 
664 / / seen list creation. 
665 ) 

666 } 
667 ) 
668 
669 /" 
670 • This method restores the general view, replacing all the objects in it. 
671 '/ 
672 pUblic void replaceAIiObjectsO { 
673 
674 Collection<Objeet30> c =Vlew30.idoToObject3D.values(); 
675 
676 for (Objeet3D o3d : c) { 
677 try { 

678 o3d.update(); 
679 ) catch (Exception eJ { 
680 System.aut.println("[VIEW - ERROR]" + e.getMessage()); 
681 ) 
682 } 
683 / / Recreate the lines. 
684 for (Object3D o3d: cj { 
685 if (o3d.linesVisible) { 
686 / / We know the lines exist, thus we have to hide, and recreate. 
687 o3d.hideLines(); 
688 o3d.showLines(); 
689 } else if (View3D.aIlLinesVisible) {
 

690 / / We know the lines weren't visible, but the user wishes ALL
 
691 / / lines to be visible, so we show them.
 
692 03d.showLines();
 
693 }
 
694 }
 
695 / / No longer in trace view.
 
696 view30.justSubObjects = false;
 
697 )
 

698 
699 /" 
700 • This method creates an up-to-date TreeLayout Object for forward traces. 
701 '/ 
702 public void createCurrentTree() { 
703 treeLayout = new TreeLayoutCO; 
704 } 
705 
706 /" 
707 * This method creates an up-to-date TreeLayout Object for backward traces. 
708 '/ 
709 public void createCurrentBackLinkTree{) { 
710 backTreeLayout = new BackTreeLayoutCO; 
711 backTreeLayout.getPosition(this); 
712 } 
713 
714 /" 
715 * This method shows the forward links for this Object30. 
716 '/ 
717 public void showLines() { 
718 try { 

719 createLines(this, ido.objeetLin ks(). keySet()); 
720 } catch (NuliLinkException e) { 
721 throw new RuntimeException(e); 
722 ) 
723 IinesVisible = true; 
724 
725 
726 /" 
727 • This method hides the forward links for this Object3D. 
728 '/ 
729 public void hideLines() { 
730 remaveLines(); 
731 linesVisible = false; 
732 ) 
733 } 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

j" 

• The View3D Class: 
• This class aims to maintain communication between the update handler, the 
• Object3D instances, and interaction with the user. 
• 
• @author Darius Bradbury. 
.j 

public class View3D extends VlewPart implements ActionListener, MouseListener { 

private boolean TESTING = false; II Testing mode flag to run test rig. 

public static java.awt.Framef; / / The frame for our 3D Canvas. 
public static Int width;// Initial width of graphics window. 
public static int height; II Initial height of graphics window. 
II Ratio of width compared to height in widescreen window. 

public static final double wideScreenRatio = 1.77; 
II Size of bounding sphere. 

public static double boundingSphereSize = Double.MAX_VALUE; 
Canvas3D canvas3D; I130 rendering canvas 
Panel b_container; II Container to hold the buttons 

Panel c_container; I I Container to hold the canvas 
Panel I_container; I I Container to hold the labels 

Panel instruct_panel; II Panel to hold instructions 
Button instruct_button; II Instructions button 

Button new_object_button; I I New Object Button 
Button create_3DS_object; 

Button clear_screen; 
Button removeJast; 
TextArea instruct_text; II TextArea object that holds instructions 
Button instruct_return_button; II Return button for instruction panel 

String textString; II Storage area for instructions 
private SimpleUniverse universe = null; 
Transform3D transform; 

int count; II current number of objects 
BranchGroup scene3D; II scene branchgroup 
TransformGroup mainTransformGroup; I I main transform group! 
BranchGroup mainBranchGroup; II main Branch Group! 

II Main HashMap for mapping IDebugObjects to thier Object3D containers. 
public static HashMap<lDebugObject, Object3D> idoToObject3D = 

new HashMap<IDebugObject, Object3D>(); 
II Keeping track of which transformGroup owns what. Used to enable picking. 
HashMap<TransformGroup, Object3D> tgToObject3D = 

new HashMap<TransformGroup, Object3D>(); 

42 boolean justSubObjects = false; I I Current state flag
 
43 Object3D currentRootNode; II Used for keeping track of trace root.
 
44 public Object3D currentRightClickedNode; I I For passing of currently
 
45 I I selected node.
 
46 private JScrollPane objectDetails; II Object details Table.
 
47 private PickCanvas pickCanvas; I I The PickCanvas used.
 
48 public int traceDirection; I I Passing of cu rrent trace direction.
 
49 public static boolean aIlLinesV;s;ble = false; I I ALL lines flag.
 
50
 
51 II Main Menu
 
52 JPopupMenu main Menu;
 
53 JMenultem gridView;
 
54 JMenultem stackView;
 
55 JMenultem divideResize;
 
56 JMenultem c1usteringBased;
 
57 JMenultem resetViewl;
 
58 JMenultem showObjectNamesl;
 
59 JMenultem hideObjectNamesl;
 
60 JMenultem showlines;
 
61 JMenultem hidelines;
 
62 JMenultem redrawSpace;
 
63 j j Object menu
 
64 JPopupMenu objectMenu;
 
65 JMenultem fOlWardTrace;
 
66 JMenultem backwardTrace;
 
67 JMenultem showObjectDetails;
 
68 JMenultem showObjectlines;
 
69 JMenultem hideObjectlines;
 
70 II Sub Objects main menu
 
71 JPopupMenu sUbObjectsMenu;
 
72 JMenultem exitTrace;
 
73 JMenultem showObjectNames2;
 
74 JMenultem hideObjectNames2;
 

75 JMenultem resetView2;
 
76
 
77 public View3D() {
 
78 I I Calls the ViewPart class.
 
79 super();
 
80 }
 

81
 
82 /".
 



83 ,., This is a callback that will allow uS to create the view perspective, and
 

84 ,., initialise it.
 ,85 
86 ,., What is expected is that we create a frame based on the input Composite 

87 • object, which will contain our view. 

88 'j
 
89 public void createPartControl(Composite parent) {
 
90
 
91 / / Create new Composite object given parent node.
 

92 Composite composite = new Composite(parent, SWT.EMBfDDED);
 

93 / / Set the 20 layout manager as a Fililayout.
 

94 composite.setLayout(new FiIlLayout());
 
95 II Create a frame to add our canvas into, along with any
 

96 II other components we wish to display.
 
97 f = SWT_AWT.new_Frame(composite);
 
98 / / Set the internal frame layout to a Flowlayout.
 
99 f.setLayout(new FlowLayout());
 

100 
101 /' 
102 ,., Create an Update handler object to deal with all underlying change 

103 ,., notifications. Subscribe the update handler to our intermediary 

104 ,., debugging framework. 

105 'j 
106 UpdateHandler uh = new UpdateHandler(thls); 

107 DebugModeIContainer.INSTANCE.addUstener(uh); 

108 
109 I I Initialise the view (Create a virtual 3D universe and a physical 

110 j j canvas) 

111 init(); 

112 
113 I I pack the resulting frame. 

114 f.pack(); 

115
 
116 I I Deal with maintaining the correct aspect ration during resizing.
 

117 composite.addControllistener(new ControIAdapter() {
 

118 pUblic void controlResized(ControlEvent e) (
 

119 canvas3D.setSize((int) (f.getBounds().height'" wideScreenRatio),!
 

120 .getBounds().height);
 

121 } 
122 }); 
123 II Set the initial size. 

124 canvas3D.setSize(int) (f.getBounds().height ,., wideScreenRatio), 

125 f.getBounds(). height); 
126 
127 I I Commence testing if mode selected. 
128 i'(TESTING) 
129 { 

130 new TestRig(uh); 
131 ) 

132 } 
133 
134 j" 
135 ,., Initialisation of the Java3D minimal scene graph. ,136
 
137 ,., This function aims to initialise the parameters required in setting up
 

138 ,., the Java3D scene graph. It also configures the user input methods,
 
139 ,., allowing interaction with the environment.
 

140 'j
 
141 public void init() {
 

142 
143 I I Create a 30 graphics canvas. 

144 canvas3D = new Canvas3D(SimpleUniverse.getPre!erredCon!iguration()); 
145 
146 I I Create the scene BranchGroup. 
147 scene3D = createScene3D(); 
148 
149 j j Pick enabling 

150 pickCanvas = new PickCanvas(canvas3D, scene3D); 
151 pickCanvas.setMode(PickTooI.GEOMETRY}; 
152 pickCanvas.setTolerance(O); 
153 
154 I I Add mouse listener 
155 canvas3D.addMouse Li stener(this); 
156 
157 I I Create a universe with the Java30 universe utility. 
158 universe = new SimpleUniverse(canvas3D); 
159 BoundingSphere bounds = new BoundingSphere(new Point3d(O.O, 0.0, 0.0), 
160 boundingSphereSize}; 
161 
162 I I Create a method for rotating the whole 3D environ ment. 
163 MouseRotate behavior = new MouseRotateO; 
164 behavior.setTransformGroup(mainTransformGroup); 



165 mainBranchGroup.addChild(behavior); 

166 behavior.setScheduIingBou nds( bounds); 
167 
168 / / Create a method for translating the whole 3D environment. 

169 MouseTranslate behavior! = new MouseTranslate(); 

170 behaviorl.setTransformGroup(mainTransformGroup); 

171 behavior!.setFactor( O. 5); 
172 mainBranchGroup.addChild(behaviorl); 
173 behaviorl.setSchedulingBounds(bounds); 

174 
175 / / Create a method for zoom"lng the users viewpoint. 

176 MouseWheelZoom behavior2 = new MouseWheel2oomO; 
177 / / Note, the transform group relies on the viewPlatformTransform, not 

178 / / the MainTransformGroup. 

179 behaviar2.setTfansformGroup( universe.getViewer().getViewingPIatform() 
180 .getViewPlatformTransform()); 

181 behavior2.setFaetor(20); 
182 mainBranchGroup.addChild(behavior2); 
183 behavior2.setSchedulingBounds(bounds); 
184 
185 / / Create a method for moving around the view point with the arrow keys" 
186 KeyNavigatorBehavior keyNavBeh = new KeyNavigatorBehavior(universe 

187 .getVlewerO.getViewingPlatform().getViewPlatformTransformOl; 

188 keyNavBehsetSchedulingBounds(bounds); 
189 mainBranchGroup.addChild(keyNavBeh); 
190 
191 / / Add our scene3D branch, to the universe. 

192 universe.addBranchG raph(seene3D); 

193 
194 / / Move the initial view back slightly, so that all the objects can be 

195 / / seen. 
196 TransformGroup tg = universe.getViewingPlatform(j 

197 .getViewPlatformTransform(); 

198 transform = new Transform3DO; 
199 transform.set(65.f, newVector31(0.0f, 0.01, 600.Of));
 
200 tg.setTra nsform(t ransform);
 

201
 
202 I I Add the 3D canvas created by Java3D to our Eclipse frame.
 

203 f.add(eanvas3D);
 
204
 
205 II Create the pop-up menus to allow extra interactions with the 3D
 

206 I I environment. 
207 createPopupMenus(); 
208 ) 
209 
210 r" 
211 .. This metl10d sets the global pop-up menu parameters. It sets their names, 
212 " and tl1eir ordering. 
213 "j 

214 private void createPopupMenus() { 
215 
216 / / Th"ls nne allows heavywe"lght creation of Swing objects. 
217 JPopupMenusetDefaultLightWeightPopupEnabled(false); 
218 
219 / / Create tile main pop-up menu. 
220 main Menu = new JPopupMenuO; 
221 
222 gridView = new JMenultem("Grid View"); 
223 stackView = new JMenultem(ITStack View lT

); 

224 divideResize = new JMenultem{"Constant Space View"); 
225 clusteringBased = new JMenultem("Clustering Based"); 
226 gridView.addActionloistener(this}; 
227 stackView.addActionUstener(this); 
228 divideResize.addActionUstener(this); 
229 clusteringBased.addActionUstener(this); 
230 mainMenu.add(gridView); 
231 mainMenu.add(stackView); 
232 mainMenu.add(divideResize); 
233 mal nMenu "add(cl usteringBased); 
234 dusteringB ased .setEnab led{false); 
235 mainMenu.addSeparator(}; 
236 
237 resetViewl = new JMenultem("Reset View"); 
238 resetViewl.addActionUstener(this); 
239 mainMenu.add(resetViewl}; 
240 showObjectNamesl = new JMenultem("Show Object Names"); 
241 showObjectNamesl.addActionloistener(this); 
242 mainMenu.add(sl1owObjectNamesl); 
243 hideObjectNamesl = new JMenultem("Hide Object Names"); 
244 hideObjeetNamesl.addActionlistener(this); 
245 mainMenu.add(hideObjectNamesl); 
246 showlines = new JMenultem("Show Unes"); 



247 5howLi nes.addAetianListener( this);
 
248 mainMenu.add(showLines);
 
249 hideLines = new JMenultem("Hide Lines");
 
250 hideli nes. addAction Li stener( this);
 
251 mainMenu.add(hideLines);
 

252 redrawSpace = new JMenultem("Redraw Space");
 

253 redra wSp ace.addActionListene r( this);
 
254 mainMenu,add(redrawSpace);
 

255
 
256 objectMenu = new JPopupMenuO;
 

257
 
258 forwardTrace = new JMenultem("Forward Trace");
 
259 forwardTrace.addAetionListener(thls);
 

260 objeetMenu.add(forwardTrace);
 

261 backwardTrace = new JMenultem("Backward Trace");
 

262 backwardTrace.addAetian listener(this);
 
263 objeetMenu.add (backwa rdTrace);
 

264 showObjectDetails = new JMenultem("Show Details");
 

265 5howObjeetDet ai Is. addAct ionListener( this) ;
 

266 objectMenu.add(showObjeetDetails);
 

267 showObjectLines = new JMenultem("Show Object Lines");
 
268 showObjeetLi nes.addAetionLi stener(this) ;
 

269 objeetMenu.add(showObjeetLines);
 

270 hideObjeetLines = new JMenultem("Hide Object Lines");
 

271 hideObjeetLines. addAeti0 nListener( this) ;
 
272 objeetMenu.add(hideObjeetLines);
 
273
 
274 subObjeetsMenu = new JPopupMenu();
 

275 
276 exitTrace = new JMenultem("Exit Trace"); 
277 exitTrace. addAeti0 nLi stener( this); 
278 subObjectsMenu.add(exitTrace); 

279 su bObjectsMenu.addSeparator(); 
280 showObjectNames2 = new JMenultem("Show Names"); 
281 showObjectNames2.addAction Listener(this); 
282 subObjectsMenu.add(showObjectNames2); 

283 hideObjeetNames2 = new JMenultem("Hide Names"); 

284 hideObjectNames2.addAetionListener(this); 
285 subObjectsMenu.add(hideObjeetNames2); 
286 resetView2 = new JMenultem("Reset View"); 
287 resetView2.addAeti0 nLi stener( this); 

288 subObjectsMenu.add{resetView2);
 
289 }
 

290
 
291 public void destroy() (
 
292 unive rse.clean upO;
 
293
 
294
 
295 /"

296 • This method sets up the main BranchGroup parameters. This is the Branch
 
297 • of the Java3D scene graph which will contain all of our run-time objects.
 
298 • We set parameters including lighting, background colour, boundingSphere,
 
299 * and capabilities of the main BranchGroup node. We also assign this
 
300 • BranchGroup an associated TransformGroup which will deal with the
 
301 • Transforms made upon the whole universe.
 ,302 
303 • @return The Main BranchGroup node. ie. A node to add all the visual 3D 
304 • objects to. 
305 '/
306 public BranchGroup createScene3DO ( 
307 
308 / / Define colours 
309 Color31 white = new Color31(1.0f, 1.01, 1.0f); 
310 Color31 bgColor = new Color31(0.251, 0.251, 0.251); 
311 
312 / / Create the Main BranchGroup 
313 mainBranchGroup = new BranchGroupO; 
314 
315 / / Create the bounding leaf node 
316 / / This specifies the size of the rendering space. 
317 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, O.OL 
318 boundingSphereSize); 
319 Boundingleaf boundingLeaf = new BoundingLeaf(boundsl; 
320 mai nB ranchG rou p.ad dChiId(boun dingLeaf) ; 
321 
322 / / Create the background 
323 Background bg = new Background(bgColor); 
324 bg.setApplicationBounds(bounds); 
325 mainBranchGroup.addChild(bg); 
326 
327 / / Create the ambient light 
328 Ambientl1ght ambLight = new AmbientLight(whitel; 



329 amblight.setlnfluencingBounds(bounds);
 
330 mainBranchGroup.addChild(amblighl);
 

331
 
332 I I Create the directional light
 
333 Vector3f dir = new Vector3f(-1.Of, -1.Of, -1.Of);
 
334 Directionallight dirUght = new DirectionaIUght(white, dir);
 
335 dirlight. setlnfluencingBounds(bounds);
 
336 mai nBranchGroup.addChIId(dirlighl);
 

337
 
338 II Create the transform group node
 
339 mainTransformGroup = new TransformGroup();
 
340 II Set the appropriate capabilities for the TranformGroup node.
 
341 
342 mainTransformGroup.setCapability(TransformGroupALLOW_ TRANSFORM_READ); 
343 
344 mainTransformGroup.setCapability(TransformGroupALLOW_ TRANSFORM_ WRITE);
 
345 mainTransformGroup.seICapabilily(Node.ENABLE_PICK_REPORTlNG);
 
346 mainTransformGroup.setCapability(BranchGroup.ALLOW_DETACH};
 
347 mainTransformG rou p.setCapabi Iity(Group ALLOW_CHILDREN_EXTEND);
 
348 mainTransformG rou p.selCapabi Iily(GroupALLOW_CHlLOREN_ WRITE);
 
349
 
350 mainBranchGroup.setCapability(BranchGroup.ALLOW_DETACH);
 
351 main BranchG roup.seICapabilily(Grou p.ALLOW_CHILDRENJXTEND);
 
352 main BranchG roup.selCapability(G roup.ALLOW_CHlLOREN_ WRITE);
 
353 II Add the main TransformGroup node to the main TransformGroup.
 
354 II This means the main transform group will be in charge of all the
 
355 II transformations of the universe as a whole.
 
356 mainBranchGroup.addChild(mainTransformGroup);
 
357 
358 return mainBranchGroup; 
359 
360 
361 In 
362 • This method is called when a menu item is selected, and allows for the 
363 * relevant task to be carried out. 

364 ' 
365 • @param e

366 * provides the menu item which was selected.
 
367 'I 
368 public void actionPeriormed(ActionEvenl e) { 
369 

370 II Get the menu item, to be compared to the known items. 
371 Object target = e.getSource(); 
372 
373 if (target == forwardTrace) { 
374 II Set global trace direction parameter to forwards. 
375 traceDirection =0; 
376 II Call the trace generating method. 
377 createTrace(); 
378 I I Reset the users perspective. 
379 resetView(); 
380 ) 
381 if (target == backwardTrace) { 
382 I I Set global trace direction to backwards. 
383 traceDirection = 1; 
384 I I Call trace creation method. 
385 createTraceO; 
386 I I Reset users perspective. 
387 resetView(); 
388 ) 

389 if (target == resetViewl II target == resetView2) { 
390 I I Allows the user to reset the view. 
391 resetView(); 
392 ) 
393 if (target == exitTrace) { 
394 I I If in a trace view, can exit to the main view. 
395 currentRootNode.removeHighlightO; 
396 currentRootNode.removeObjectlinks(); 
397 cu rrentRootNode. replaceAllObjects() ; 
398 
399 resetView(); 
400 } 
401 if (target == showObjectNames1 II target == showObjectNames2) { 
402 I I Allows the showing of object names. 
403 if (jusISubObjects) { 
404 I I If in the trace view, only create the names of the items in 
405 II the trace. 
406 for (IDebugObjecl i : Object3D.seenObjectLlst) { 
407 idoToObject30.get(i).showDelailsO; 
408 } 
409 } else ( 
410 I I Else, create all names for ALL the objects in the collection. 



411 for (Object3D 0: idoToObject3D.values()) { 

412 o.showOetailsO; 
413 } 
414 } 
415 } 

416 if (target == hideObjectNamesl II target == hideObjeetNames2) { 

417 / / Inverse of above, hiding the object names. 
418 if (justSubObjects) { 
419 for (IDebugObjeet i : Object3D.seenObjectlist) { 
420 idoToObject3D.get(i).hideDetails(); 
421 } 
422 } else { 
423 for (Object3D 0: idoToObject3D.values!)) { 

424 o.hideDetails!); 
425 } 

426 } 
427 } 
428 if (target == showlines) { 
429 
430 II Create the directed lines of the graph. 
431 for (Objeet3D 0: idoToObject3D.values!)) { 
432 o.showLines(J; 
433 } 
434 / / Set global all lines visible to true. 
435 / / If user continues debugging, all new objects will have lines 
436 / / created. 
437 ollLinesVisible = true; 
438 ) 

439 If (target == hideLines) { 
440 II Remove directed lines of the graph. 
441 for (Object3D 0: idaToDbject3D.values()) ( 
442 o.hideUnesO; 

443 ) 
444 allUnesVisibfe = false; 
445 } 

446 if (target == showObjectLines) ( 

447 / / Create lines for this object only 
448 cu rrentR ig htCI iekedNode .showlines(); 
449 } 
450 if (target == hideObjeetUnes) ( 

451 / / Hide lines for this object only 

452 cu rrentR ightClickedNode .hidelines( l; 
453 ) 
454 if (target == redrawSpace) { 
455 / / Allows the space to be redrawn. 
456 for (Objeet3D 0: idaTaObject3D.values()) { 
457 o.update!); 
458 if (o.linesVisible II alllinesVisible) { 
459 o.showlines(); 
460 } 
461 } 

462 resetView(); 
463 } 

464 if (target == showObjeetDetails) { 
465 
466 

1/ Allows the user to view extended details of an object. 
if (objeetDetails != null) { 

467 II If object table already exists, remove it. 
468 !.remove(objectDetajls); 
469 ) 

470 Vector<String> column Names = new Vector<String>O; 
471 columnNames.add("Data"); 
472 columnNames.add("Value"); 
473 
474 / / Create data vector, add all the information to it. 
475 Vector<Vector<String» data = new Vector<Vector<String»(}; 
476 Vector<String> name =: newVector<String>(); 
477 name.add("Name:"); 
478 name.add(currentRightClickedNode.name); 
479 data.add(name); 
480 
481 Vector<String> javaType = new Vector<String>O; 
482 javaType.add( ItJava Type:"); 
483 try { 
484 javaType.add(currentRightClickedNode.ido.getValue() 
485 .geUavaType().toString()); 
486 } catch (DebugException e2) ( 
487 e 2.printStackTraceO; 
488 ) 
489 data.add(javaType); 
490 
491 Vector<String> ref = newVector<String>O; 
492 ref.add("JVM Reference"); 



493 try ( 
494 ref 

495 ,add(currentRightClickedNode,ido,getValue() 

496 ,getValueStringOi; 

497 } catch (DebugException e2) { 

498 e2. pri ntStackTrace(); 
499 } 
500 data,add(ref); 

501 
502 try ( 
503 for (IVar'lable var: currentRightClickedNode.ido.getValueO 

504 ,getVariablesOi { 

505 Veetor<String> variable = new Vector<String>(); 

506 variable,add(var, getNameO); 

507 variable,add(var,getValueO,toStringO); 

508 
509 data,add(variable); 

510 } 
511 } catch (DebugException e1) ( 

512 e 1. printStackTrace(); 
513 ) 
514 
515 /1 Create table from collected data 
516 Hable objectOetailsTable = new JTable(data, columnNames); 
517 objectDetails::: new JScroIIPane(objeetDetailsTable); 
518 II Add t.ble to frame, 

519 f.add(objeetDetails); 

520 II pack the frame. 

521 f.packO; 
522 } 
523 if (target == gridView) { 

524 II Change general layout manager. 

525 Object3DJayoutMonagerType = Object3D,gridtype; 

526 Object3D.layoutMonager = new Gridlayout{}; 
527 II Update objects to update positions from new layout manager. 

528 for (Object3D 0: idaTaObject3D,valuesO) ( 
529 o,updateO; 

530 ) 

531 / / All objects created, create lines. 

532 for (Object3D 0: idoToObject3D,values()) ( 

533 if (o.llnesVisible) { 

534 o,hideUnesO; 

535 o.showlinesO; 
536 } else if (aIlLinesVisible) { 
537 o.showlines(); 

538 } 
539 ) 

540 resetView(); 
541 II Disable relevant menu option. 
542 gridView,setEnabled(false); 
543 stackView.setEnabled(true); 

544 divi deRes·1 ze.setEnabled(t rue); 

545 cI usteringBased .setEnab Jed(true); 

546 } 
547 if (target == stackView) { 
548 II Change general layout manager. 

549 Object3D.layoutMonagerType = Object3Dstacktype; 
550 Object3D.layoutMonager = new StackedlayoutO; 

551 II Update objects to update positions from new layout manager. 

552 for (Object3D 0: idoToObjeet3D,values()) ( 
553 o.updateO; 
554 ) 
555 II All objects created, create lines. 

556 for (Object3D 0: idoToObject3D,values()) { 
557 if (oJinesVisible) { 

558 o.hidelinesO; 

559 o,showlines(); 

560 ) else if (all linesVisible) { 
561 o.showlines(); 

562 } 
563 ) 
564 resetView(); 

565 II Disable relevant menu option. 

566 gridView.setEnabled(true); 

567 stackView,setEnabled(false); 
568 divideResize.set Enabled(true); 
569 c1usteringBased .setE nabled(true); 
570 ) 
571 if (target == divideResize) ( 

572 II Change general layout manager. 
573 Object3D.layoutMonogerType = Object3D.rankbased; 
574 Object3D.loyoutManager = new RankBasedlayout(); 



575 II Update objects to update positions from new layout manager. 

576 for IObjeet3D 0: idoToObjeet3D.values()) { 

577 o.update(); 
578 } 
579 II All objects created, create lines. 

580 for (Objeet3D 0: idaTaObject3D.values()) ( 

581 if (o.linesVisible) { 

582 o.hidelinesO; 

583 o.showLinesO; 

584 } else if (alllinesVisible) { 

585 o.showLinesO; 

586 } 
587 } 
588 resetView(); 

589 II Disable relevant menu option. 

590 gridView.setEnabled{true); 
591 stackView.setEnabled(true); 
592 divi de Resize.setEnabled(false); 
593 cIUste ri ngBased .setE nab1ed (true); 
594 } 
595 if (target == dusteringBased) ( 
596 II Change general layout manager. 

597 Object3D.layautManagerType = Object3D.c1usrerbosed; 

598 Object3D.layautManager = new ClusteringBasedLayout(); 

599 II Update objects to update positIons from new layout manager. 

600 for (Objeet3D 0: idoToObject3D.values()) ( 

601 o.update(); 

602 ) 

603 II All objects created, create lines.
 

604 for (Object3D 0: idaTaObject3D.values()) (
 

605 if (o.linesVisible) {
 

606 o.hideLinesO;
 

607 o.showLines();
 

608 ) else K (aIlLinesVisibJe) {
 

609 o.showLines();
 

610 )
 
611 }
 
612 resetView();
 

613 II Disable relevant menu option.
 
614 gridView.setEnabled(true);
 
615 stackView.setEnabled(true);
 

616 divideResize.setE nabled(true); 
617 c1usteringBased.setEnabled(false); 
618 } 
619 1 
620 
621 /" 
622 • This method aims to reset the View, in case the user wishes to return to 
623 * the default view position. 
624 '/ 
625 private void resetVijew() ( 
626 mainTra nsformGroup. setTransform(new Transfo rm3DO); 
627 TransformGroup tg = universe.getViewingPlatform() 
628 .getViewPlatformTransform(); 
629 transform == new Transform3D(J; 
630 transform.set(G5.f, new Veetor3f(O.0f, O.Of, GOO.Of)); 
631 tg. setTransform(t ra nsf0 rm) ; 
632 } 
633 
634 /" 
635 • This method generates a trace based on the current node which has been 
636 • selected, and a pre-set int representing the direction of the trace. 
637 '/ 
638 public void createTrace() ( 
639 Object3D tempo = currentRightClickedNode; 

640 
641 Collection<Object3D> c = idoToObject3D.values(); 
642 
643 II Clear the scene graph 
644 for (Object3D o3d : c) { 

645 mainTransformGroup.removeChild(03d.getBranchGroup()); 
646 
647 
648 /' 
649 * Signify which object is the root. We need to know this for further 
650 * right dick events. 

651 '/ 
652 currentRootNode = tempo; 
653 
654 II create tree layout for objects. 
655 if (trace Direction == 0) { 
656 II Create forward trace 



657 tempo.createCurre ntTree0; 
658 tempo.displayObjectU nks(); 

659 } else if (traceDirection == 1) { 

660 / / Create backward trace 

661 tempo.createCurre ntBackU nkTree(); 
662 tempo.displayObjectBackUnks(); 
663 } 

664 / / We only want to highlight the root node. 

665 tempo. highIightCurrentObject() ; 

666 } 
667 
668 I" 
669 '" This method generates new Object3D instances. We expect it to be called 

670 '" from the UpdateHandler class when new objects have been generated. ,671 
672 • @param ida

673 '" the IDebugObject we would like to make an Object3D wrapper 

674 '" for. 
675 'I 
676 public void createNew(IDebugObject idol { 
677 
678 if (idoToObject3D.isEmpty() II !idoToObject3D.containsKey(idoj) ( 

679 Object3D newObj =new Object3D(ido, this); 

680 mainTransformGroup.addChild(newObj.getBranchGroup()); 
681 idoToObject3D.put(ido, newObj); 
682 } 

683 } 
684 
685 I" 
686 '" Ifthe underlying system removes an object, we must remove it from our 3D 

687 '" graph. ,688
 
689 '" @param ida 

690 '" The lDebugObject which has been removed.
 

691 'I
 
692 public void remove(IDebugObject idol {
 

693
 
694 mainTransformGroup,removeChild(idoToObject3D.get(ido).getBranchGroup());
 

695 idoToObject3D.remove(ido);
 
696 }
 
697
 

698 I"
 
699 ,.. Dealing with user interaction.
 ,700 
701 • Alt+Left-Click = Reset View. 
702 • Left-Click on Object =Generate name for that object. 
703 • In general view: 
704 • right-click in 'space' = Create main menu. 
705 • right-click on object =Create Object menu. 
706 • In Trace view; 

707 ,.. right-click in 'space' = Create trace menu. 
708 ,.. right-click on root = go back to general view. 

709 • right-click on child node = create selected objects trace. 
710 • @param e
711 • The MouseEvent received from which we can decipher what action 
712 • must be taken. 
713 'I 
714 public void mouseClicked(MouseEvent e) { 
715 
716 / / Alt+ Left-Click resets the view. 

717 if (e.isAltDownO && e.getButton() == MouseEvent.BUTTON1) { 
718 resetView(); 
719 } 
720 / / Left-Click generates name of object selected. 
721 else if (e.getButlonO == MouseEvent.BUTTON1) { 
722 
723 pickCa nvas .setShapelocation(e) ; 

724 // Pick object in that position. 
725 PkkResult result =pickCanvas.pickClosest(); 
726 if (result == null) ( 
727 / / Nothing Picked, do nothing. 
728 ) else { 
729 
730 II Get Object selected. 
731 Primitive p = (Primitive) result.getNode(PickResult.PRIMITIVE); 
732 
733 if (p 1= null) ( 
734 / / Get Object3D wrapper for selected object. 
735 Object3D tempo = tgToObject3D.get(p.getParent()); 
736 / / Show/hide name object for picked node. 
737 if (ltempo.detaiisVisible) { 
738 tempo.showDetailsO; 



739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 

} else ( 

tempo.hideDetalls(); 
} 

} 
} 

} 
/ / In general view, right-click generates main menu, or object menu 
/ / dependent on whether object selected or not 
else if (!jvstSvbObjects && e.getBvttonO == MovseEvent.BUTTON3) { 

pickCa nvas.setShapelocaflon(e);
 

PickResult result = prckCanvas.pickClosest();
 

if (resvlt == nvlI) {
 

/ / Nothing picked. show main menu.
 
mainMenv.show(e.getComponentO, e.getXO, e.getY(});
 

} else { 

/ / Create object menu, for this object, setting current right 

/ / clicked node parameter. 

objectMenv.show(e.getComponent(), e.getXO, e.getY()); 

Primitive p = (Primitive) result.getNode{PickResult.PRIMfTJVE); 

Objeet3D tempo =tgToObjeet3D.get(p.getParent()); 

currentRightClickedNode = tempo; 

} 

) 
/ / In Trace view, right-click generates trace menu if 'space' clicked, 

/ / if root node picked, we return to general view, else we create trace 

/ / for selected object.
 
else if (jvstSvbObjeets && e.getBvtton() == MovseEvent.BUTTON3) {
 

pickCanvas.setShapelocation(e);
 
PickResult result = pickCanvas.pickClosest();
 

if (resvlt == nUll) ( 
/ / Nothing picked, show trace menu. 
svbObjeetsMenv.show(e.getComponent(), e.getX(), e.getY()); 

} else ( 

Primitive p = (Primitive) result.getNode(PickResult.PRIMITIVE); 

if (p != nvll) ( 

780 
781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 

Objeet3D tempo = tgToObjeet3D.get(p.getParent()); 

if (tempo == currentRootNode) (
 

/ / Go back to general view.
 
tempo,removeHighlight();
 
tempo.removeObjectLinks();
 
tempo.replaceAIIObjeets();
 

resetView();
 
} else { 

r 
* In this situation, the user probably want to pick the 
* tree corresponding to the clicked on object. We must 
* therefore reset the view, and perform the operation 

* for the new object. 

'f 
currentRootNode.removeHighlight(); 
currentRootNode.removeObjeetLinks(); 

currentRootNode.replaceAlIObjeetsO; 

currentRightClickedNode = tempo; 
/ / Create trace takes into account the trace direction.
 
createTraceO;
 
/ / Centre the root node.
 
resetView();
 

}
 

}
 

}
 
}
 

}
 
) 



1 package view-interfaces;
 
2
 
3 import java.util.linkedlist;
 
4 import javax.vecmath.Vector3d;
 
5 import view.views.Objeet3D;
 
6
 
7 /**
 
8 * This class serves as a controller for the positions of each Object3D in the 
9 * system. 

10' 
11 * @author Darius Bradbury 
12 '/ 
13 public interface layoutManager3D { 
14 
15 /" 
16 * Maintained current ranking list, updated each time updateAlIPositions is 
17 ' called, 
18 '/ 
19 public static linkedUst<Objeet3D> currentRanking 
20 = new Linkedlist<ObJect3D>(); 
21 
22 /" 
23 * @param o3d 
24 * the Object3D we want the position of. 
25 * @returnA three-dimensional vector representing it's position. 
26 '/ 
27 public Veetor3d getPosition(Objeet3D o3d); 
28 
29 /" 
30 * This method tells the layout Manager to reconsider its position values. 
31 * We call this method when the underlying model changes. 
32 '/ 
33 public void updateAIiPositions(); 
34 } 
35 



1
2
3
4
5

6
7

8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28
29

30
31

32
33
34
35
36
37
38
39
40
41

I" 
• The GridLayout Class: 
• This class aims to maintain a grid of 3D vector 
• positions. New positions are created as new objects are passed into the 
• model. 

' 
• @author Darius Bradbury. 

'/ 
public class ~~ implements LayoutManager3D { 

II Storage of Object3D to pos'rtion vectors.
 
private HashMap<Object3D, Vector3d> o3dVectorMap;
 
II Current position in the grid.
 
private Vector3d curPos;
 

/" 
* Instantiate object, and set init"lal grid position. 

'/ 
public GridLayoutO {
 

o3dVectorMap = new HashMap<Object3D, Vector3d>O;
 
curPos = newVector3d(-50, 30, 0);
 

) 

/" 
• This method creates a new 3D vector for the given Object3D object. 

' 
• @param 03d 
• Object wanting new grid position. 
• @return Vector corresponding to that Object3D's position. 

'/ 
private Vector3d createNewPosition(Object3D o3d) { 

II Make sure we haven't gone past the screens width.
 
if (curPos.getXO > (View3D.f.getBoundsO.height'
 

View3D.wideScreenRatia) / 10) { 
I I If gone past screen width, drop down a line, and go back to 
II initial X-axis position. 
curPos.setX(-50); 
curPos.setY(curPos.getYO - 25); 

) 
II Generate a new vector for current position. 

42 Vector3d thisVec = new Vector3d(curPos); 
43 I I Move vector along. 
44 curPos.setX(curPos.getX() + 25); 
45 I I Place this vector into the map. 
46 o3dVectorMap.put(03d, thisVec); 
47 II Return newry generated vector. 
48 return thisVec; 
49 
50 
51 /"
52 • This 'IS a public method designed to return the position of the g'lven 
53 ~ Object3D. If it's never been seen, create a new one, else pass on old 
54 • position.,55 
56 • @param o3d
57 • Object querying for it's position vector. 
58 • @return - 3D Vector representing its position. 
59 '/ 
60 public Vector3d getPosition(Object3D o3d) { 
61 
62 if (o3dVectorMap.isEmptyO II !o3dVectorMap.containsKey(03d)) { 
63 II Never seen this Object3D, thus create new position. 
64 return new Vector3d(createNewPosition{o3d)); 
65 } else { 
66 II Seen this Object3D before, return it's position vector. 
67 Vector3d pos = o3dVectorMap.get(03d); 
68 return new Vector3d(pos);
 
69 }
 
70 }
 
71
 
72 /"

73 ~ This is a required method for all subclasses of the LayoutManager class.
 
74 • We require it to maintain the ranking of the objects when called, this
 
75 • allows for proper resizing of the objects when the underlying state
 
76 • changes.,77
 
78 '/
 
79 public void updateAIIPositions() {
 
80
 
81 I I First extract all the Object3D objects still in our system.
 
82 Collection<Object3D> totalListOfObjects = View3D.idoToObjed3D.valuesO;
 



83 
84 linkedList<Object3D> totalRankedListOfObjects = new linkedList<Object30>( 
85 IOlaILisIOiObjects);
 
86
 
87 / / Sort the collection based on rank
 
88 Collections.5ort(totaIRankedListOfObjeets, new Comparator<Object30>() {
 
89 public Int compare(Object3D argO, Object3D arg11 {
 
90 double dill = argO.ido.geIPageRankO· arg1.ido.geIPageRankO;
 
91 If (dill> OJ{
 
92 return -1;
 
93 ) else If (dill < OJ{
 
94 return 1; 
95 ) else { 
96 return 0; 
97 ) 
98 )
 
99 ));
 

100 / / Clear current ranking. 
101 cur",ntRonking.clearO; 
102 / / Save this total object ranking. 
103 cur"'ntRonking. addAl1 (lola IR anked Lis t 010bjects);
 
104 }
 
105 }
 
106
 



1
2
3
4

5
6

7
8
9

10
11
12
13
14

15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37

38
39
40
41

I" 
• The RankBasedLayout Class: 
• This class performs the Divide and Resize process to distribute the objects, 
• providing a layout manager to access the positions for each Object3D object. 

' 
• @author Darius Bradbury 

'/ 
public class RankBasedLayout implements LayoutManager3D { 

II Storage of Object3D to position vectors. 
private HashMap<Objeet3D, Veetor3d> 03dVeetorMap = 

new HashMap<Object3D, Vector3d>(); 
II Locally stored ranked list of objects, used to generate positions.
 
private LinkedList<Objeet3D> totalRankedListOfObjects;
 
liThe radius of the 3D sphere we are to contain our objects within.
 

private double totalRadius;
 

/" 
• We instantiate a new RankBasedLayout manager, update the 
• current list of objects, and define the size of the 3D space we are to 
• contain our objects within. 

'/
 
public RankBasedLayout() {
 

createRankedListOfObjects();
 
totalRadius = 100;
 

}
 

/" 
• This method creates, or updates, our ranked list of objects. It is called 
• each time the underlying state changes, and is used in generating the 
• layout. 

'/
 
private void createRankedListOfObjects() {
 

II First extract all the Object3D objects still in our system. 
Colleetion<Object3D> totalListOfObjects = View3D.idaTaObject3D.valuesO; 

totalRankedListOfObjects = new LinkedList<Object3D>(totaIListOfObjects); 

II Sort the collection based on rank 
Colleetions.soTt(totaIRankedListOfObjects, new Comparator<Object3D>() { 

public int compare(Object3D argO, Object3D arg11 { 

42 double diff = argO.ido.getPageRankO - arg1.ido.getPageRank(); 

43 if (diff> O){ 
44 return -1; 
45 }else if (diff < 0) { 
46 return 1; 
47 }else { 
48 return 0; 
49 } 
50 ) 

51 )); 

52 II Clear current ranking 
53 currentRanking .c1ear(); 
54 II Save this total object ranking. 
55 currentRanking.addAII(totalRankedUstOfObjeets); 
56 } 
57 
58 /" 
59 • Performs a BFS to create all nodes in order of rank. This method is only 
60 • called once, and creates positions for all the objects when called. ,61 
62 • @param 03d 
63 • The Object3D wishing to get it's position vector.
 
64 '/
 
65 private Vector3d createNewPosition(Object30 o3d) {
 
66
 
67 I I Create all positions.
 
68 createPositions(new Veetor3d(0, 0, 0), totalRadius, 6,
 
69 totalRan ked ListOfObjects);
 
70 II Return position for given Object3D.
 
71 return 03dVectorMap.get(03d);
 
72 )
 
73
 
74 /"
 
75 • This method updates our ranked list of objects, and then creates the
 
76 • positions for all Object30 objects based on our new ranking.
 
77 '/
 
78 public void updateAIIPositionsO {
 
79 II Create Ranking.
 
80 createRan ked UstOfObjects();
 
81 II Create Positions.
 
82 createPositions(new Veetor3d(0, 0, 0), totalRadius, 6,
 



83
 
84
 
85 /"
 
86 • (non-Javadoc)
 

87 "
 
88 • @see view,interfaces,layoutManager3D#getPosition(view.views.Object3D)
 

89 "/
 
90 public Vector3d geIPo,ilion(Object3D o3d) (
 

91
 
92 if (o3dVeclorMap.i,Emply()) [
 

93 / / If map empty, create ranked list, and all positIons.
 

94 createRan ked listOfObjects();
 

95 Vector3d v3d = createNewPosition(03d);
 

96 return v3d;
 

97 }_I._ ~ (!o3dVectorMap.conlain,Key(03d)) ( 

98 / / If map non-empty, but doesn't contain given Object3D, clear the 

99 / / mapping, recreate our ranked list, and recreate alII positions. 

100 o3dVecto rMap.c1ear(); 

101 creale Ra nked Li'1000bj_cts(); 

102 return createNewPosition(03d); 

103 }_I.- {
104 / / Position in map, just return it. 

105 return o3dVectorMap.get(03d}; 

106 } 
107 } 
108 
109 /.. 
110 * This method takes the root position forthis rankBased Layout, thl: root 

111 • object, the radius of the sphere within it must work, and the direction 

112 '" from which it was generated. 

113 " 
114 0 means it cam from -infIx)of< 

115 1 means it came from +inf(x)of< 

116 ·2 means it came from -inf(y)
 

117 • 3 means it came from +inf(y)
 

118 ·4 means it came from -inf(z)
 

119 • 5 means it came from +lnf(z)
 

120 • 6 means it's the root, and can go out in all directions.
 

121
 " 
122 • It then creates positions for each of the positions in the given list. 
123 " 

124 • @param root 
125 '" Our root position, the starting point for space generation.
 
126 • @param radius 
127 '" Radius of the sphere of 3D Space allotted for our objects.
 
128 • @param cameFrom
129 • Direction came from relative to parent Object3D.
 
130 • @param rankedUstOfObjeets 
131 • The Object3Ds to distribute in this space.
 
132 "/ 
133 private void createPositions(Vector3d root, double radius, int came From, 
134 LinkedLisl<Object3D> rankedListOfObj_cts) ( 

135 
136 I I Ascertain the number of objects we must distribute. 

137 int numberOfOBjects = rankedListOfObjects.size(); 
138 
139 I I Place root node in position.
 
140 Objeet3D rootNode = rankedUstOfObjects.removeFirst();
 
141 03dVectorMap.put(rootNode, root);
 
142
 
143 II Once placed, add to totalSeen set, so it is no longer considered by
 
144 I I sub-groups.
 
145 totalSee n.add(rootNode);
 
146
 
147 I I Create list of lists representing groups of objects.
 
148 I I Do NOT destroy rankedlistOfObjects.
 
149 UnkedUst<UnkedList<Object3D» groups = getGroups(rankedListOfObjects);
 
150
 
151 II Create sub-lists - we want to keep sImilar objects together.
 
152 UnkedUst<Object30:> 110 = new LinkedUst<Object3D:>();
 
153 UnkedUst<Object3D:> 111 = new LinkedUst<Object3D:>O;
 
154 UnkedUst<Object3D:> 112 = new LinkedUst<Object3D:>O;
 
155 UnkedUst<Object3D:> 113 = new UnkedUst<Objeet3D:>O;
 
156 LinkedLi,I<Object3D> 114 = new LinkedLisl<Object3D>();
 
157 UnkedList<Object3D:> 115 = new LinkedList<Objeet3D:>();
 
158 
159 II Start from last direction used. This means we get a more even
 
160 I I distribution of directions within our space.
 
161 I I We could use a random number for even distribution, but we want our
 
162 I I visualisations to be the same each time.
 
163 int i = directioni;
 

164 II Add groups of nodes at a time, as each group represents similar
 



165 111.add(rankedListOfObjects.removeFi rst()); 

166 break; 
167 case 2: 
168 i++; 
169 if (cameFrom == 2) { 
170 break; 
171 } 
172 112.add(ra nked ListOfObjects. removeFirst()); 

173 break; 
174 case 3: 
175 i++; 
176 if (cameFrom == 3) { 
177 break; 
178 } 
179 113.add(ra nkedListO!Objects. removeFi rst () ); 
180 break; 
181 case 4: 
182 i++; 
183 if (cameFrom == 4) { 
184 break; 
185 } 
186 114.add( ra nkedListOfObjects. removeFi rst() ); 
187 break; 
188 case 5: 
189 i =0; 
190 if (cameFrom == 5) { 

191 break; 
192 } 

193 115.add(ra nkedL! stOfObiects. removeF! rst()); 

194 break; 
195 } 
196 I 
197 
198 r 
199 • Create positions for the sub-lists. each time halving their space, 

200 * and repositioning their root. We do this in order to ensure that each 

201 • sub-space doesn't "grow" towards it's parent node. 

202 '/ 
203 
204 if (came From != 0 && !1I0.isEmpty()) { 

205 createPositions(new Vector3d(root.getXO· radius, root.getYO, 

206 root.getl()), radius / 2,1,110);
 
207 }
 
208 if (cameFrom != 1 && !1I1.isEmptyl)) (
 

209 createPositions(new Vector3d(root.getXO + radius, root.getY(),
 
210 root.getll)), radius / 2, 0, 111);
 
211 )
 
212 if (cameFrom != 2 && !1I2.isEmptyl)) (
 

213 createPositions(new Vector3d(root.getXO, root.getYO - radius,
 
214 root.getll)), radius / 2,3,112);
 
215 }
 
216 if (cameFrom != 3 && !I13.!sEmpty()) {
 

217 createPositions(new Vector3d(root.getXO, root.getYO + radius,
 
218 root.getll)), radius / 2, 2, 113);
 
219 )
 
220 if (cameFrom != 4 && !I14.isEmptyl)) {
 

221 createPositions(new Vector3d(root.getX(), root.getY(), root.getl()
 
222 - radius), radius /2,5,114);
 
223 }
 
224 if (cameFrom != 5 && !1I5.isEmptyl)) {
 

225 createPositions(new Vector3d(root.getX(), root.getY(), root.getl()
 
226 + radius), radius / 2, 4, 115);
 
227 }
 

228 } 
229 } 
230 



1
2
3
4
5

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

r· 
* The C1usteringBasedLayout Class: 
* This class performs a clustering algorithm 
* to distribute the objects, providing a layout manager to access the positions 
* for each Object3D object. 

' 
• @author Darius Bradbury 

'/ 
public class ClusteringBasedLayout implements LayoutManager3D { 

I I Storage ofObjeet3D to position vectors.
 
private HashMap<Object3D, Veetor3d> o3dVectorMap =
 

new HashMap<ObjecI3D, Veetor3d>(); 
IlOur local ranked list of objects, used in creating positions.
 
public LinkedList<Object3D> totalRankedListOfObjects;
 
private HashSet<Object3D> totalSeen; II Maintains placed objects.
 
private double totalRadius; II Size of space we initially work with.
 
private int direetioni = 0; II Direction we grow into.
 

/" 
• We instantiate a new ClusteringBasedLayout manager, update the current 
• list of objects, and define the size of the 3D space we are to contain
 
• our objects within.
 

'/ 
public ClusleringBasedLayoul() {
 

crealeRankedLislOfObjeclsO;
 
IOlalRadius = 100;
 
II Create seen object list.
 
lolalSeen = new HashSel<Objeet3D>();
 

} 

private void crealeRankedUslOfObjectsO { 

I I First extract all the Object3D objects still in our system. 
Collection<Object3D> totallistOfObjeets =View3D.idoToObjeet3D.values(); 

totalRankedListOfObjeets = new linkedList<Objeet3D>(totaIUstOfObjects); 

I I Sort the collection based on rank 
Colleetions,Sort(totalRankedListOfObjects, new Comparator<Object3D>() { 

public int compare(Objecl3D argO, Objeet3D arg1) { 

42 double dill = argO.ido.geIPageRank() - argl.ido.geIPageRank(); 
43 if (dill> O){ 
44 return -1; 
45 }else if (dill < 0) { 
46 return 1; 
47 }else { 
48 return 0; 
49 } 

50 } 

51 )); 

52 I I Clear current ranking 
53 currentRanking.clear(); 
54 I I Save this total object ranking. 
55 currentRan king. addAl1(totaIRanked ListOf0 bjeets); 
56 ) 
57 
58 /"
59 • Performs a BFS to create all nodes in order of RANK 
60 '/ 
61 private Vector3d createNewPosition(Objeet3D o3d) { 
62 
63 createPositions(new Vector3d(0, 0, 0), totalRadius, 6, 
64 totalR an ked ListOfObjects); 
65 return o3dVectorMap.get(03d); 
66 } 
67 
68 /' 
69 '" (non~Javadoc) 

70 
71 '" @see view. interfaces.LayoutManager3DtlupdateAIIPosrtions() 
72 '/ 
73 public void updateAIIPositionsO { 
74 II Reset parameters. 
75 directioni = 0; 
76 totaISeen.clear{); 
77 o3dVeetorMap.c1ear(); 
78 I I Recreate local ranked list. 
79 createRa nked ListOfObjects(); 
80 II Create new positions. 
81 createPositions(new Vector3d(0, 0, 0), totalRadius, 6, 
82 lolal RankedLisIOfObjeets); 



83 totaIRankedListOfObjects); 

84 
85 
86 ;* 
87 '" (non-Java doc)
 
88 '" @see view.interfaces.LayoutManager3D#getPosition(view.views.Object3D)
 

89 *;
 
90 public Vector3d getPositioniObject3D o3d) {
 
91
 
92 if (o3dVectorMap.isEmpty()) {
 
93 / / If map empty, create ranked list, and all positions.
 
94 createRankedListOfObjects();
 
95 Vector3d v3d = createNewPosition(03d);
 
96 return v3d;
 
97 }else if (!o3dVectorMap.containsKey(03d)) {
 
98 II If map non~emptYJ but doesn't contain given Object30, clear the
 
99 II mapping, recreate our ranked list, and recreate alii positions.
 

100 o3dVectorMap.c1ear(); 
101 createRankedListOfObjects(); 
102 return createNewPosition(03d); 
103 } else {
 
104 II Position in map, just return it.
 
105 return o3dVectorMap.get(03d);
 
106 } 
107 ) 
108 
109 ;.. 
110 '" This method creates the vector positions for the given Object3D's. 
111 '" The came from location tells us the location of this sub-space, relative 
112 '" to its parent's space: 
113 * 
114 '" ameans it came from -inf(x) 
115 * 1 means it came from +inf(x) 
116 * 2 means it came from -inf(y) 
117 * 3 means it came from +inf(y) 
118 * 4 means it came from -inf(z) 
119 * 5 means it came from +inf(z) 
120 * 6 means it's the root, and can go out in all directions. 
121 * 
122 * @param root 
123 * Our root position, and centroid of space for given Object3D's.
 

124 * @param radius
125 * Radius of the sphere of 3D Space allotted for our objects. 
126 * @param cameFrom
127 * Direction came from relative to parent Object3D. 
128 * @param rankedListOfObjects
129 * The Object30s to distribute in this space. 
130 *; 
131 private void createPositions(Vector3d root, double radius, int cameFrom, 
132 LinkedList<Object3D> rankedListOfObjects) { 
133 
134 II Place root node in position. 
135 03dVectorMap.put(rankedListOfObjects.removeFirst(), root); 
136 
137 II Create sub-fists. 
138 LinkedList<Object30> 110 = new LinkedList<Object30>(); 
139 LinkedList<Object3D> III = new LinkedList<Object30>(); 
140 LinkedList<Object30> 112 = new LinkedList<Object30>(); 
141 linkedList<Object3D> 113 = new LinkedList<Object30>(); 
142 LinkedList<Object30> 114 = new LinkedList<Object30>(); 
143 linkedList<Object30> 115 = new LinkedList<Object30>(); 
144 
145 ;* 
146 * Divide List up into 5 or 6 depending on cameFrom location We evenly 
147 * distribute our Object30's over the lists and ensure that each list 
148 • preserves its rank order. 
149 *; 
150 int i =0; 
151 while (!rankedListOfObjects.isEmpty()) { 
152 switch Ii) { 
153 case 0: 
154 i++; 
155 if (cameFrom == 0) { 
156 break; 
157 ) 
158 110.add(rankedListOfObjects.removeFirst()); 
159 break; 
160 case 1: 
161 i++; 
162 if (cameFrom == 1) { 
163 break; 
164 



165 / / objects. 
166 while (!groups.isEmpty()) { 
167 switch (I) { 
168 case 0: 
169 i++; 

170 if (cameFrom == 0) { 
171 break; 
172 ) 

173 110.addAII(groups.removeFlrstl)); 
174 break; 
175 case 1: 
176 i++; 
177 if (cameFrom == 1) { 
178 break; 
179 } 
180 111.addAII(groups.removeFIrstl) ); 
181 break; 
182 case 2: 
183 i++; 
184 if (cameFrom == 2) { 
185 break; 
186 } 

187 112.addAII(groups. removeFIrstl) ); 
188 break; 
189 case 3: 
190 i++; 

191 if (cameFrom == 3) { 
192 break; 
193 } 
194 113.addAII(groups.removeFirst()); 
195 break; 
196 case 4: 
197 i++; 
198 if (cameFrom == 4) { 
199 break; 
200 } 

201 114.addAII(groups. removeFirst I)); 
202 break; 
203 case 5: 
204 i = 0; 
205 if (came From = 5) { 

206 break; 
207 ) 

208 115. addAII(groups. remove Flrstl)); 
209 break; 
210 ) 
211 } 
212 direct;oni = i; 
213 
214 /*
215 * Here we distribute the objects based on how many we are deallng with. 
216 * If we have over 50, we "grow" our graph, such that, we move outside 
217 * of OUf given bounds, however, we only grow "outwards", not towards 
218 * OUf parent node. Otherwise, we stick to the space we have, and 
219 * generate this space as in the Divide and Resize algorithm. 

220 '/
221 if (numberOfOBjects > 50) { 
222 / / Check positions are free, If not, put into guaranteed free 
223 / / direction 
224 
225 / / Set toPosition to represent moving in the negative X-axis 
226 I I direction. 
227 Vector3d toPosition = new Vector3d(root.getX() - radius, root 
228 .getYI), root.getZ(}); 
229 II Check no node already exists there. 
230 if (o3dVectorMap.containsValue(toPosition)) { 
231 II If node exists, pass these elements to a different direction 
232 / / list. 
233 IIl.addAII(1I0); 
234 1I0.elearO; 
235 ) 

236 II Set toPosition to represent moving in the positive X-axis 
237 II direction. 
238 toPosition = new Vector3d(root.getXO + radius, root.getYO, root 
239 .getZ(}); 
240 if (o3dVectorMap.containsValue(toPosition)) { 
241 112.addAII(1I1); 
242 Ill.elearO; 
243 ) 

244 I I Set toPosition to represent moving in the negative Y-axis 
245 I I direction. 
246 toPosition = new Vector3d(root.getXO, root.getYO - radius, root 



247 .geIZOI;
 

248 if (o3dVectorMap.containsValue(toPosition)) (
 

249 113.addAII(IIZ);
 
250 112.dear();
 

251 ) 

252 / / Set toPosition to represent moving in the positive V-axis
 

253 / / direction.
 
254 toPosition = new Vector3d(root.getXO, root.getY() + radius, root
 
255 .geIZOI;
 
256 if (o3dVectorMap.containsValue{toPosition)) (
 

257 114.addAII(113);
 
258 113.dear();
 
259 } 

260 II Set toPosition to represent moving in the negative Z-axis
 

261 / / direction.
 
262 toPosition = new Vector3d(root.getX(), root.getY(), root.getZ()
 
263 - radius);
 
264 if (o3dVectorMap.containsValue(toPosition)) {
 

265 115.addAII(1I4);
 

266 114.dear();
 

267 } 

268 / / Set toPosition to represent moving in the positive Z-axis
 

269 /1 direction.
 
270 toPosition = new Vector3d(root.getXO, root.getV(), root.getZO
 
271 + radius);
 
272 if (o3dVectorMap.containsValue(toPosition)) {
 

273 / / If we find positive Z-axis contains a node, we put nodes into
 
274 / / guaranteed free direction.
 

275 / / Namely, away from our cameFrom location!
 
276 if (cameFrom == 0) (
 
277 II1.addAII(1J5);
 

278 } 

279 if (cameFrom == 1) ( 
280 1I0.addAII(1I5); 
281 } 
282 if (cameFrom == 2) ( 

283 113.addAII(1I5); 
284 } 

285 if (cameFrom == 3) ( 
286 112.addAII(1I5); 
287 } 

288 if (cameFrom == 5) { 
289 114.addAII(115); 
290 } 
291 ) 
292 
293 (* 

294 ,. We now create the positions by iteratively calling this method 
295 ,. again. However, not that we don't change the radius size, and we 
296 ,. move along by the whole radius size. 
297 *( 

298 if (came From != 0 && !1I0.isEmplyl)) { 
299 toPosition = new Vector3d(root.getX() - radius, root.getY(), 
300 rool.getZl)); 
301 createPositions(toPosition, radius, 1, liD); 
302 } 
303 if (cameFrom != 1 && !1Il.isEmplyl)) ( 
304 toPosition = new Vector3d(root.getX() + radius, root.getY(), 
305 rool.geIZI)); 
306 createPositions(toPosition, radius, 0, 111); 
307 ) 
308 if (cameFrom != 2 && lIl2.isEmplyl)) { 
309 toPosition = new Vector3d(root.getXO, root.getYO - radius, 
310 rool.getZl)); 
311 createPositions(toPosition, radius, 3, 112); 
312 ) 
313 if (cameFrom != 3 && !1I3.isEmplyl)) ( 
314 toPosition = new Vector3d(root.getXO, root.getY() + radius, 
315 rool.getZl)); 
316 createPositions(toPosition, radius, 2, 113); 
317 } 
318 if (cameFrom != 4 && !1I4.isEmplyl)) { 
319 toPosition = new Vector3d(root.getXO, root.getYO, root.getZO 
320 - radius); 
321 createPositrons(toPosition, radius,S, 114); 
322 ) 
323 if (cameFrom != 5 && !115.isEmplyOl { 
324 toPosit;on = new Vector3d(root.getXO, root.getYO, root.getZO 
325 + radius); 
326 createPositions(toPosition, radius, 4, 115); 
327 
328 



329 r 
330 • If we have under 50 objects to place in our given space then we 

331 • perform the normal Divide and Resize algorithm. 

332 '/ 
333 else { 
334 1/ Direction to move root for current sub-object list. 

335 Veetor3d toPosition; 
336 
337 / / Note that we half the radius given to our sub objects list in 

338 / / this instance. 
339 if (cameFrom != 0 && IIIO:15Emply()) { 

340 toPosition = new Vector3d(root.getXO - radius, root.getYO, 
341 rool,getZ()); 

342 createPositrons(toPosition, radius / 2,1,110); 

343 }
 

344 if (cameFrom 1= 1 && !II1.isEmply()) {
 

345 toPosition = new Vector3d(root.getXO + radius, root.getvO, 
346 rool,getZ()); 

347 createPositions(toPosition, radius / 2, 0, 111); 
348 } 
349 if (cameFrom 1= 2 && !112.isEmpty()) { 

350 toPosition = new Vector3d(root.getXO, root.getY(). radius, 
351 rool,getZ()); 

352 createPositions(toPosition, radius / 2, 3, 112); 

353 } 
354 if (cameFrom 1= 3 && !113.isEmpty()) { 

355 toPosition = newVector3d(root.getX(), root.getY() + radius, 

356 root,getZ()); 

357 createPositions(toPosition, radius I 2, 2, 113); 
358 } 
359 if (cameFrom 1= 4 && !114.isEmpty()) { 

360 toPosition = new Vector3d(root.getXO, root.getYO, root.getZO 
361 - radius); 
362 createPositions(toPosition, radius I 2, 5, 114); 
363 } 

364 if (cameFrom 1= 5 && !IIS.isEmpty()) { 

365 toPosition = new Vector3d(root.getXO, root.getYO, root.getZO
 
366 + radius);
 
367 createPositions(toPosition, radius I 2, 4, liS);
 
368 )
 
369 }
 

370 
371 
372 /"
373 • We calculate groups based on contexts. We remove all nodes already placed 
374 • in graph from context, and thus group Dr cluster these elements based on 
375 • links without the parent node, and hence, aJilinks reachable from it, 
376 • but not from within the group members directly. In other words, the 
377 • context of a node is all the nodes it can reach, without going through 
378 • the objects already placed in the graph. ,379
 
380 • In th"ls way, we sprlt the graph into it's sub-graphs.
 ,381 
382 • @param rankedListOfObjects 
383 • objects in this part of the 3D graph. 
384 • @return List of related groups. 
385 '/
386 private LinkedList<linkedList<Object30» getGroups( 
387 Unkedlist<Object30> inputlist) ( 
388 
389 I I Set our seen set, to all the objects PLACED in the map. 
390 HashSet<Object3D> seen = new HashSet<Object3D>(totaISeen); 
391 
392 I I Create ranked list of objects based on input set (which is already in 
393 / / order,) 

394 Linkedlist<Object3D> rankedlistOfObjects = new linkedlist<Object3D>( 
395 inputlist); 
396 II Create list of lists.
 
397 linkedlist<Unkedlist<Object30» groups = new
 
398 Unkedlist<lin kedUst<Object3D»O;
 
399
 
400 for (Object30 o3d : rankedLislOfObjeets) ( 
401 II We only want to create new groups for UNSEEN objects. 
402 if (!seen,contains(03d)) { 

403 Unkedlist<Object3D> group = new linkedlist<Object30>(); 
404 II Add to seen list, as we don't want to pass through this node 
405 / / again, 
406 seen,add(03d); 

407 II Add to current group. 
408 group,add(03d); 
409 
410 I I We then find related items to this 03d, and place into this 



411 II list. 

412 LinkedList<Object3D> contextList = new UnkedList<Object30>O; 

413 
414 try { 

415 II Look at forward links. 

416 for (Entry<IDebugObject, IVariable> variableLink: o3d.ido 

417 .0bjectLinks().entrySet()) { 

418 Object3D forwardLinkObject = View30.idoToObject3D 

419 .get(varl ab leLink.getKey() ); 

420 if (lseen.contains(forwardLinkObject)) { 

421 / / Unseen node, so add to current context, 
422 / / overall group, and seen list. 
423 contextUst.add(forwa rdLi nkObjeetl; 
424 see n.add(farwardLinkObjectJ; 
425 grou p. add(fa rwardLinkObject) ; 
426 } 
427 } 

428 II Look at backward links. 
429 for (Entry<lDebugObjeet, IVariable> variableLink; o3d.ido 

430 .backLinks().entrySet()) { 

431 Object3D backwardUnkObject = View3DJdoToObject3D 

432 .get(variab IeLink.getKey() ); 

433 if (!seen.contains(backwardLinkObjeel)) { 
434 / / Unseen node, so add to current context, 
435 / / overall group, and seen list. 
436 context list.add(backward linkObject) ; 

437 seen.add( backwardLi nkObject); 
438 group.add( backward Lin kObject); 

439 ) 

440 } 

441 ) catch (NullLinkExceptlon e) { 
442 e. printStackTraceO; 

443 } 
444 
445 II Now iterate through this objects context nodes. 
446 while (!contextList.isEmpty()) { 
447 Object3D newContextObject = contextList.remo\/e(); 
448 try { 

449 I I look at forward links. 
450 tor (Entry<lDebugObject, IVariable> \/ariablelink : 
451 newContextObjeel.ido.objectLinks() .entrySet()) { 

452 Object3D forwardLinkObject = View3D.idoToObject3D 
453 .get(va riableLin k.getKey() I; 
454 if (!seen.contains(forwardLinkObject)) { 
455 I I Add to current context. 
456 contextList.add(fo rwa rdUnkObjeet); 
457 I I Add to seen nodes. 
458 seen.add(forwardUnkObject); 
459 I I Add to current group. 
460 group.add( fo rward Li nkObject); 
461 } 
462 } 
463 II look at backward links. 
464 for (Entry<IDebugObject, IVariable> lIariableUnk : 
465 newContextObjeel.ido. backLi nksO .entrySetO) { 
466 Object3D backwardUnkObject = View3D.idoToObjeet3D 
467 .get(va riableLi nk.getKey()); 
468 if (!seen.contains(backwardLinkObjeel)) ( 
469 I I Add to current context. 
470 context list.add( backwardlinkObject); 
471 I I Add to seen nodes. 
472 seen.add(backwardUnkObject); 
473 I I Add to current group. 
474 group.add{ backwardLin kObject); 
475 ) 
476 ) 
477 } catch (NullLinkException e) { 
478 e. pri ntStaekTraceO; 
479 } 
480 } 
481 
482 I I Sort our new group list based on importance. 
483 
484 CoUections.5ort(group, new Comparator<Object3D>() { 
485 public int compare(Objec13D argO, Objeel3D argll { 
486 double diff = argO.ido.getPageRankO 
487 - argLido.getPageRank(); 
488 if (dlff > 0)( 
489 return -1; 
490 } else if (diff < 0) { 
491 return 1; 
492 } else { 



493 return 0;
 
494 }
 
495 }
 
496 ));
 
497 / / Add this group to our overall set of groups.
 
498 groups.add(group);
 
499 )
 
500 } 
501 return groups; 
502 
503 
504 
505 



1
2
3
4
5

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41

j*. 

• The TreeLayout Class: 
• This class controls the positioning of the all the 
• objects in a forward trace, given a root node. It performs a Breadth-First 
• search to do this. 

' 
• @author Darius Bradbury 

'/ 
public class TreeLayoutC implements LayoutManager3D { 

II lDebugObject to Position Vector mapping,
 
private HashMap<IDebugObject, Vector3d> idoVectorMap;
 
II Positlon of the root.
 
public Vector3d rootPos;
 
I I Current position in the tree.
 
public Vector3d curPos;
 
II list of seen objects, to cope with loops.
 
LinkedUst<IDebugObject> seenUst;
 
II Map of lDebugObjects to their sub-tree size.
 
private HashMap<IDebugObject, Integer> sizeMap;
 

/" 
• Creates a new Tree Layout Manager, resetting the root and current 
• position vectors. 

'/ 
public TreeLayoutC() {
 

idoVectorMap = new HashMap<IDebugObject, Vector3d>O;
 
rootPas = new Vector3d(0, 30, 0);
 
curPos = new Vector3d(0, 30, 01;
 

) 

/" 
• ThiS method creates a new position for the given Object3D object, i,n 
• doing 50, it creates positions for all Object3D's in its forward trace 
• subtree, and sets the given node as the root. 

' 
• @param o3d
• Object3D not in map, thus needing its position. 
• @return 3DVectm representing Object3D's position. 
• @throws NuliLinkException 
• due to the IDebugObject'slink extraction method. 

42 '/ 
43 public Vector3d createNewPosition(Object3D o3dj throws NullLinkException { 
44 
45 II Create fresh list of seen nodes. 
46 seenUst = new LinkedUst<lDebugObject>O; 
47 II Create fresh map of sub-tree sizes; 
48 sizeMap = new HashMap<IDebugObject, Integer>O; 
49 II Calculate the size of this lDebugObjects sub-tree, and all the 
50 II IDebugObjects within that sub-tree. 
51 getSize(03d.ido);
 
52 I I Create root position, place given node in root position.
 
53 Veetor3d thisVec = new Veetor3d(rootPos);
 
54 idoVeetorMap.put(03d.ido, thisVec);
 
55 
56 II Create all the nodes, and leaves.
 
57
 
58 I I Forward links container mapping.
 
59 Map<IDebugObjeet, IVariable> linklist;
 
60 II Put objects AND primitives.
 
61 linklist = o3d.ido.objectLinks();
 
62
 
63 I I List of link entries.
 
64 LinkedList<Entry<IDebugObject, IVariable» children =
 
65 new LinkedUst<Entry<IDebugObject, IVariable»O;
 
66 II Seen list for this pass.
 
67 LinkedList<IDebugObject> seen = new LinkedList<JDebugObject>O;
 
68 II Add root node to seen list.
 
69 seen.add(03d.ido);
 
70 
71 II Iterate through each IDebugObject our root points to. 
72 for (Entry<IDebugObject, IVariable> ido: linklist.entrySet()) { 
73 if (!seen.contains(ido.getKey())) { 
74 II If not in seen list, add to seen list, add to children. 
75 children.add(ido); 
76 seen.add(ido.getKey()); 
77 ) 
78 
79 
80 II Create List of lists representing levels of the tree. 
81 LinkedList<LinkedUst<IDebugObject» levelsOfChiidren = new 
82 Linked List<Li nked List<1 DebugObject»(); 



83 II Create temporary list containing working level.
 

84 linkedlist<IDebugObject> thislevel = new linkedlist<IDebugObject>();
 

85 II indicator for level change.
 

86 int levellndicator = chiidren.sizeO;
 
87
 
88 I'
 
89 * Here we create a list of lists containing the objects of each level.
 

90 * In other words, we are creating a list of the levels by performing a
 

91 * BFS, once all nodes in a level have been consumed, we generate a new
 

92 * list.
 
93 'I
 
94 while (!children.isEmptyO) (
 
95 if (Ievellndicator == 0) {
 
96 II We know we have come to the end of this level, must create a
 
97 II new one.
 
98 levellndicator = children.size();
 
99 leve IsOfChiIdren.add (t hisleve I) ;
 

100 II Create new working list for new level. 

101 thislevel = new linkedlist<IDehugObject>(); 

102 } 
103 
104 II look at current child from list, ie. BFS. 

105 IDebugObject curChild = children.removeFirstO.getKey(); 

106 
107 II Iterate through child's forward links. 
108 for (Entry<IDebugObject, IVariable> variablelink : curChild 

109 .objectLinksO.entrysetOi { 
110 if (!seen.contains(variableLink.getKeyOl) { 
111 ch i Idren.add(va riablelink); 

112 seen.add(va ria bleLink. getKey( I); 
113 } 
114 } 

115 
116 II Add current child node to level list.
 
117 th islevel.add(curChi Id);
 
118 II Decrement level counter, so we know when level has finished.
 

119 levellndicator-;
 

120
 
121
 
122 II Add final level to overall levels.
 
123 Ie veisOfChiIdren.add(t his leve I);
 

124
 
125 II Now create positions from this list of levels.
 
126 II Iterating through each level, until leaves have been reached.
 
127 II In other words, we place nodes, on a level-at-a-time basis.
 
128 while (!IevelsOfChiidren.isEmpty()) {
 
129
 
130 II New level, so we drop down a level In our 3D space.
 
131 curPos.setY(curPos.getYO - 25);
 
132
 
133 II Take current level from list of levels.
 
134 linkedlist<IDebugObject> currentlevel = levelsOfChildren.remove();
 
135
 
136 1* Calculate space required *1
 
137 int currentlevelSize = 0;
 
138 II Level size determined by the sum of the size of each child.
 
139 for (IDebugObject i : currentlevel) {
 
140 currentlevelSize += getSize(i);
 
141
 
142
 
143 II Move horizontal position all the way to the left.
 
144 curPos.setX(rootPos.getXO - ((currentlevelsize • 25) 121);
 
145
 
146 II Iterate through children, and place them.
 
147 while (!currentlevel.isEmpty()) {
 
148 II Get child.
 
149 IDebugObject currentObj = currentlevel.removeFirst();
 
150 II get child's size.
 
151 int currentObjSize = getSize(currentObj);
 
152 II Move position in relation to the child's size, such that
 
153 II all its children will fit underneath it.
 
154 curPos.setX((currentObjSize .. 25) 12 + curPos.getX());
 
155 II Place object.
 
156 idoVectorMap.putleurrentObj, newVector3d(eurPos));
 
157 II As object placed in the middle of this space, move over to
 
158 II the edge, such that a new object can be placed.
 
159 curPos.setX((currentObjSize" 25) 12 + eurPos.getX());
 
160 }
 
161 }
 

162 II Return root position.
 
163 return idoVectorMap.get(03d.ido);
 
164 }
 



165
 
166 f"
 
167 • (non-Javadoc)
 

168
 
169 .. @see view.interfaces.LayoutManager3D#getPosition(view.views.Object3D)
 

170 "f 
171 public Vector3d getPosition(Object30 o3d) {
 

172
 
173 if (idoVectorMap.isEmptyO II !idoVectorMap.containsKey(03d.ido)1 {
 

174 II Need to create the tree with this Object3D as the root.
 
175 try {
 
176 / / Thus create tree with o3d as root.
 
177 return new Vector3d(createNewPosition(03d)); 

178 }catch (NullLinkException e) { 

179 throw new RuntimeException(e); 

180 }
 
181 }else {
 
182 / / Object3D already in tree, thus, just return its position.
 

183 Veetor3d pos = idoVectorMap.get(03d.ido);
 

184 return new Vector3d(pos);
 

185 )
 
186 )
 
187
 
188 f"
 
189 "This method returns the number of leaves in the object links tree. The 
190 • Size Map should be cleared at each iteration of the program, this is so 

191 • that new sizes can be updated when they change. 
192 "f
 
193 public int getSize(IOebugObject idol throws NullLinkException {
 

194 / / If size already calculated, thus in size mapping, return entry.
 
195 if (!sizeMap.isEmptYIlI {
 

196 if (sizeMap.containsKey(ido)) {
 

197 return sizeMap.get(ido};
 

198 )else {
 
199 throw new RuntimeException(
 
200 "SYSTEM CALLED FOR GETSIZE ON AN UNKNOWN ELEMENT.");
 

201 }
 
202 }
 
203 II If size mapping yet to be created, and given lDebugObject has some 
204 II forward links, perform single pass through objects, calculating 

205 II sizes as we go. 

206 else if (ido.objectLinksll.sizell > 0) { 

207 
208 II Create list of IDebugObject and their ancestors in the tree. 
209 LinkedList<idoAncestorsListPair> list = 

210 new Lin ked List<idoAncestorsListPair>(); 

211 II Add root node to the seen List. 
212 seenUst.add(ido); 
213 
214 I I Iterate through the forward links of this IDebugObject, creating 

215 II lDebugObject, ancestor pairings as we go. 

216 for (Entry<lDebugObject, IVariable> variableLink: ido 
217 .objectLinksll.entrySetOi ( 

218 if (!seenList.contains(variableLink.getKey())) { 

219 idoAncestorsListPair idoAncestorsPair = new idoAncestorsListPair( 

220 variableLi nk.getKeyOl; 

221 II root;s parent, so add to ancestor list. 
222 idoAncestorsPair.addAncestor(ido); 

223 II Add to overall BFS search list. 
224 Jist.add(idoAncestorsPair); 
225 II Add to list of seen nodes, maintaining BFS search pattern. 
226 seenList. add(varia bleLin k.getKey()); 
227 ) 

228 ) 
229 
230 I I Calculate how many elements are below root. 
231 
232 I I Iterate through list of children. 
233 while (!list.isEmptyOi { 

234 II Create clone of our list, to allow it to be destroyed. 
235 LinkedList<idoAncestorsListPair> tempUst = 
236 (LinkedList<idoAncestorsListPair» list.doneO; 
237 II clear current list. 
238 list.dearll; 

239 II Iterate through each child node in the original list. 
240 for (idoAncestorslistPair i : tempList) { 
241 int childrenCount = 0; 
242 II Iterate through that child's forward links. 
243 for (IDebugObject newi : LgetIOOO.objectLinksll.keySetOi { 
244 II List added with new objects 
245 II While loop continues until all objects 
246 II iterated through. 



247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 

if (!seenlist,contains(newil) { 
II increment number of children counter. 
childrenCount++; 
idoAncestorsListPair idoAncestorsPair = new idoAncestorsListPair{ 

newi);
 
II Add all current ancestors.
 
idoAn cesta rsPair.addAncesto r5( i.getAncestors()I;
 
II Add current parent.
 

idoAncestorsPair. addAncesto r( 1. getl DOm;
 
II Add this node to the "to-be iterated" list.
 
list.add(idoAncesto rs Pa'I r);
 
II Add to list of seen nodes. {Dealing with
 
II backlinks.}
 

seenlist.add( new!);
 
)
 

)
 

I' 
* If node has no children, we know it's a leaf! Crucially, 
* we can now look at all its ancestors, and increase their 
* size. As we do this for all leaves, we know each node in 

* the tree will have a size depending on the number of LEAF 
* nodes in its sub-tree, 

'I 
if (chiidrenCount == 0) (
 

II New node, so put straight into map.
 
s;zeMap.put(i.getIDOO, i);
 
II We then 'Increment the size of EVERY ancestor.
 
for (IDebugObject ancestor: LgetAncestorsO) {
 

if (sizeMap.containsKey(ancestor)) {
 
int curSize -= sizeMap,get(ancestor);
 
s;zeMap.put(ancestor, curSize + 1);
 

) else { 
sizeMap.put(ancestor, 1); 

} 
) 

} 
) 

) 
II Return size of originallDebugObject. 
return sizeMap.get(ido); 

288 ) else { 
289 II If originallDebugObject is a feaf, size is simply 1. 
290 sizeMap.put(ido, 1); 
291 return 1; 
292 ) 
293 } 
294 
295 I' 
296 * (non-Javadoc) 
297 '" @see vi ew. interfaces.layoutMa nage r3D#u pd ateAl1 Positions() 
298 'I 
299 public void updateAIIPositions() { 
300 II Tree recreated at each step, this is not a general view layout 
301 II manager, so we don't need to implement this method. 
302 II This is a special case for layout Managers. 
303 
304 
305 
306 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/*. 
.. The idoAncestorListPair class: 
• This class allows for the size of a tree to be 
• calculated efficiently. It provides a way of storing each node, alongside all 
• of its ancestors. 
• 
• @author Darius Bradbury.
 
•
 
·1 

public class idoAncestorsListPair { 
II The IDebugObjecl node. 
lDebugObjecl ido; 
/ / The IDebugObject's ancestors in the tree. 
Linkedlist<IDebugObject> ancestors; 

I·· 
• Instantiates the object, setting the node to the given IDebugObject. 
• 
• @param ido 
• The node we want to maintain a list of ancestors for. 
·1 

public idoAncestorsloistPair(IDebugObjeet idol {
 
this.ido = ido;
 
ancestors = new LinkedUst<IDebugObjeet>O;
 

} 

r· 
• Add an ancestor to the list. 
• 
• @param o3d 
• One of the nodes ancestors. 
·1 
public void addAnceslor(IDebugObject o3d) {
 

anceslors.add(03d);
 
}
 

r· 
• Add a list of ancestors to the list. 
• 
• @param ancestorList
• list of ancestors to be added. 

42 ·1 
43 public void addAncestors(Linkedlist<IDebugObject> ancestorList) { 
44 ancestors. addAII(ancesta rU st); 
45 } 

46 
47 r· 
48 • Enable IDebugObject to be retrieved. 
49 • 
50 • @returnthe IDebugObject node. 
51 ·1
 
52 public IDebugObjecl gellDO() {
 
53 return ida;
 
54
 
55 
56 r· 
57 • Returns a list of all the ancestors of this IDebugObject. 
58 • 
59 • @return list of ancestors. 
60 ·1 
61 public LinkedLisl<IDebugObject> gelAnceslors() { 
62 return ancestors; 
63 } 
64 } 
65 



1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41

I" 
• The activator class controls the plug-in life cycle 
'j 
public class Activator extends AbstractUIPlugin { 

jlThe plug-in 10 
public static final String PLUGIN_ID = "View"; 

liThe shared instance 
private static Activator plugin; 

j" 
• The constructor 
'j 
public AclivalorO (
 

plugin = this;
 
) 

I' 
• (non-Javadoc) 
• @see 

org.ecl ipse.ui. pi ugin.AbstractU IPI ugi n1tsta rt( 0 rg.osgi. framework.Bund IeContext) 
'j 
public void start{BundleContext context) throws Exception { 

super.slart(conlext); 
) 

j' 
.. (non-Javadoc) 
• @see 

org.eclipse.ui.plugin.AbstractUIPluginttstop(org.osgi.framework.BundleContext) 
'j 
public void stop(BundleContext context) throws Exception {
 

plug;n = null;
 
super.stop{context);
 

j" 
• Returns the shared instance 

' 
.. @returnthe shared instance 

42 'j
 
43 public static Activator getDefault() {
 
44 return pJugin; 
45 
46 
47 j" 
48 • Returns an image descriptor for the image file at the given 
49 • plug-in relative path ,50 
51 • @param path the path 
52 • @return the image descriptor 
53 'j 
54 public static ImageDescriptor getlmageDescriptor{String path} { 
55 return imageDescriptorFromPlugin(PLUGIN_ID, path); 
56 ) 
57 
58 


